Cargando…
Molecular Analysis of an Outbreak of Lethal Postpartum Sepsis Caused by Streptococcus pyogenes
Sepsis is now the leading direct cause of maternal death in the United Kingdom, and Streptococcus pyogenes is the leading pathogen. We combined conventional and genomic analyses to define the duration and scale of a lethal outbreak. Two postpartum deaths caused by S. pyogenes occurred within 24 h; o...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697669/ https://www.ncbi.nlm.nih.gov/pubmed/23616448 http://dx.doi.org/10.1128/JCM.00679-13 |
_version_ | 1782275200982712320 |
---|---|
author | Turner, Claire E. Dryden, Matthew Holden, Matthew T. G. Davies, Frances J. Lawrenson, Richard A. Farzaneh, Leili Bentley, Stephen D. Efstratiou, Androulla Sriskandan, Shiranee |
author_facet | Turner, Claire E. Dryden, Matthew Holden, Matthew T. G. Davies, Frances J. Lawrenson, Richard A. Farzaneh, Leili Bentley, Stephen D. Efstratiou, Androulla Sriskandan, Shiranee |
author_sort | Turner, Claire E. |
collection | PubMed |
description | Sepsis is now the leading direct cause of maternal death in the United Kingdom, and Streptococcus pyogenes is the leading pathogen. We combined conventional and genomic analyses to define the duration and scale of a lethal outbreak. Two postpartum deaths caused by S. pyogenes occurred within 24 h; one was characterized by bacteremia and shock and the other by hemorrhagic pneumonia. The women gave birth within minutes of each other in the same maternity unit 2 days earlier. Seven additional infections in health care and household contacts were subsequently detected and treated. All cluster-associated S. pyogenes isolates were genotype emm1 and were initially indistinguishable from other United Kingdom emm1 isolates. Sequencing of the virulence gene sic revealed that all outbreak isolates had the same unique sic type. Genome sequencing confirmed that the cluster was caused by a unique S. pyogenes clone. Transmission between patients occurred on a single day and was associated with casual contact only. A single isolate from one patient demonstrated a sequence change in sic consistent with longer infection duration. Transmission to health care workers was traced to single clinical contacts with index cases. The last case was detected 18 days after the first case. Following enhanced surveillance, the outbreak isolate was not detected again. Mutations in bacterial regulatory genes played no detectable role in this outbreak, illustrating the intrinsic ability of emm1 S. pyogenes to spread while retaining virulence. This fast-moving outbreak highlights the potential of S. pyogenes to cause a range of diseases in the puerperium with rapid transmission, underlining the importance of immediate recognition and response by clinical infection and occupational health teams. |
format | Online Article Text |
id | pubmed-3697669 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-36976692013-07-09 Molecular Analysis of an Outbreak of Lethal Postpartum Sepsis Caused by Streptococcus pyogenes Turner, Claire E. Dryden, Matthew Holden, Matthew T. G. Davies, Frances J. Lawrenson, Richard A. Farzaneh, Leili Bentley, Stephen D. Efstratiou, Androulla Sriskandan, Shiranee J Clin Microbiol Bacteriology Sepsis is now the leading direct cause of maternal death in the United Kingdom, and Streptococcus pyogenes is the leading pathogen. We combined conventional and genomic analyses to define the duration and scale of a lethal outbreak. Two postpartum deaths caused by S. pyogenes occurred within 24 h; one was characterized by bacteremia and shock and the other by hemorrhagic pneumonia. The women gave birth within minutes of each other in the same maternity unit 2 days earlier. Seven additional infections in health care and household contacts were subsequently detected and treated. All cluster-associated S. pyogenes isolates were genotype emm1 and were initially indistinguishable from other United Kingdom emm1 isolates. Sequencing of the virulence gene sic revealed that all outbreak isolates had the same unique sic type. Genome sequencing confirmed that the cluster was caused by a unique S. pyogenes clone. Transmission between patients occurred on a single day and was associated with casual contact only. A single isolate from one patient demonstrated a sequence change in sic consistent with longer infection duration. Transmission to health care workers was traced to single clinical contacts with index cases. The last case was detected 18 days after the first case. Following enhanced surveillance, the outbreak isolate was not detected again. Mutations in bacterial regulatory genes played no detectable role in this outbreak, illustrating the intrinsic ability of emm1 S. pyogenes to spread while retaining virulence. This fast-moving outbreak highlights the potential of S. pyogenes to cause a range of diseases in the puerperium with rapid transmission, underlining the importance of immediate recognition and response by clinical infection and occupational health teams. American Society for Microbiology 2013-07 /pmc/articles/PMC3697669/ /pubmed/23616448 http://dx.doi.org/10.1128/JCM.00679-13 Text en Copyright © 2013 Turner et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license (http://creativecommons.org/licenses/by/3.0/) . |
spellingShingle | Bacteriology Turner, Claire E. Dryden, Matthew Holden, Matthew T. G. Davies, Frances J. Lawrenson, Richard A. Farzaneh, Leili Bentley, Stephen D. Efstratiou, Androulla Sriskandan, Shiranee Molecular Analysis of an Outbreak of Lethal Postpartum Sepsis Caused by Streptococcus pyogenes |
title | Molecular Analysis of an Outbreak of Lethal Postpartum Sepsis Caused by Streptococcus pyogenes |
title_full | Molecular Analysis of an Outbreak of Lethal Postpartum Sepsis Caused by Streptococcus pyogenes |
title_fullStr | Molecular Analysis of an Outbreak of Lethal Postpartum Sepsis Caused by Streptococcus pyogenes |
title_full_unstemmed | Molecular Analysis of an Outbreak of Lethal Postpartum Sepsis Caused by Streptococcus pyogenes |
title_short | Molecular Analysis of an Outbreak of Lethal Postpartum Sepsis Caused by Streptococcus pyogenes |
title_sort | molecular analysis of an outbreak of lethal postpartum sepsis caused by streptococcus pyogenes |
topic | Bacteriology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697669/ https://www.ncbi.nlm.nih.gov/pubmed/23616448 http://dx.doi.org/10.1128/JCM.00679-13 |
work_keys_str_mv | AT turnerclairee molecularanalysisofanoutbreakoflethalpostpartumsepsiscausedbystreptococcuspyogenes AT drydenmatthew molecularanalysisofanoutbreakoflethalpostpartumsepsiscausedbystreptococcuspyogenes AT holdenmatthewtg molecularanalysisofanoutbreakoflethalpostpartumsepsiscausedbystreptococcuspyogenes AT daviesfrancesj molecularanalysisofanoutbreakoflethalpostpartumsepsiscausedbystreptococcuspyogenes AT lawrensonricharda molecularanalysisofanoutbreakoflethalpostpartumsepsiscausedbystreptococcuspyogenes AT farzanehleili molecularanalysisofanoutbreakoflethalpostpartumsepsiscausedbystreptococcuspyogenes AT bentleystephend molecularanalysisofanoutbreakoflethalpostpartumsepsiscausedbystreptococcuspyogenes AT efstratiouandroulla molecularanalysisofanoutbreakoflethalpostpartumsepsiscausedbystreptococcuspyogenes AT sriskandanshiranee molecularanalysisofanoutbreakoflethalpostpartumsepsiscausedbystreptococcuspyogenes |