Cargando…
Dissecting High-Dimensional Phenotypes with Bayesian Sparse Factor Analysis of Genetic Covariance Matrices
Quantitative genetic studies that model complex, multivariate phenotypes are important for both evolutionary prediction and artificial selection. For example, changes in gene expression can provide insight into developmental and physiological mechanisms that link genotype and phenotype. However, cla...
Autores principales: | Runcie, Daniel E., Mukherjee, Sayan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697978/ https://www.ncbi.nlm.nih.gov/pubmed/23636737 http://dx.doi.org/10.1534/genetics.113.151217 |
Ejemplares similares
-
Factor analysis models for structuring covariance matrices of additive genetic effects: a Bayesian implementation
por: de los Campos, Gustavo, et al.
Publicado: (2007) -
Local genetic covariance between serum urate and kidney function estimated with Bayesian multitrait models
por: Lupi, Alexa S, et al.
Publicado: (2022) -
Mega-scale Bayesian regression methods for genome-wide prediction and association studies with thousands of traits
por: Qu, Jiayi, et al.
Publicado: (2022) -
On Information Rank Deficiency in Phenotypic Covariance Matrices
por: O’Keefe, F Robin, et al.
Publicado: (2021) -
Sparse matrices
por: Tewarson, Reginald P
Publicado: (1973)