Cargando…
MGC: a metagenomic gene caller
BACKGROUND: Computational gene finding algorithms have proven their robustness in identifying genes in complete genomes. However, metagenomic sequencing has presented new challenges due to the incomplete and fragmented nature of the data. During the last few years, attempts have been made to extract...
Autores principales: | El Allali, Achraf, Rose, John R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698006/ https://www.ncbi.nlm.nih.gov/pubmed/23901840 http://dx.doi.org/10.1186/1471-2105-14-S9-S6 |
Ejemplares similares
-
Feature selection for gene prediction in metagenomic fragments
por: Al-Ajlan, Amani, et al.
Publicado: (2018) -
MZPAQ: a FASTQ data compression tool
por: El Allali, Achraf, et al.
Publicado: (2019) -
CNN-MGP: Convolutional Neural Networks for Metagenomics Gene Prediction
por: Al-Ajlan, Amani, et al.
Publicado: (2018) -
Set-theory based benchmarking of three different variant callers for targeted sequencing
por: Molina-Mora, Jose Arturo, et al.
Publicado: (2021) -
VariantMetaCaller: automated fusion of variant calling pipelines for quantitative, precision-based filtering
por: Gézsi, András, et al.
Publicado: (2015)