Cargando…
Hierarchical level features based trainable segmentation for electron microscopy images
BACKGROUND: The neuronal electron microscopy images segmentation is the basic and key step to efficiently build the 3D brain structure and connectivity for a better understanding of central neural system. However, due to the visual complex appearance of neuronal structures, it is challenging to auto...
Autores principales: | Wang, Shuangling, Cao, Guibao, Wei, Benzheng, Yin, Yilong, Yang, Gongping, Li, Chunming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698088/ https://www.ncbi.nlm.nih.gov/pubmed/23805885 http://dx.doi.org/10.1186/1475-925X-12-59 |
Ejemplares similares
-
Trainable segmentation for transmission electron microscope images of inorganic nanoparticles
por: Bell, Cameron G., et al.
Publicado: (2022) -
Two-Level Evaluation on Sensor Interoperability of Features in Fingerprint Image Segmentation
por: Yang, Gongping, et al.
Publicado: (2012) -
A New Multistage Medical Segmentation Method Based on Superpixel and Fuzzy Clustering
por: Ji, Shiyong, et al.
Publicado: (2014) -
Issues on Trainability
por: Radak, Zsolt, et al.
Publicado: (2022) -
Trainable WEKA (Waikato Environment for Knowledge Analysis) Segmentation Tool: Machine-Learning-Enabled Segmentation on Features of Panoramic Radiographs
por: Kanuri, Nitin, et al.
Publicado: (2022)