Cargando…

Preventing the onset of major depression based on the level and profile of risk of primary care attendees: protocol of a cluster randomised trial (the predictD-CCRT study)

BACKGROUND: The ‘predictD algorithm’ provides an estimate of the level and profile of risk of the onset of major depression in primary care attendees. This gives us the opportunity to develop interventions to prevent depression in a personalized way. We aim to evaluate the effectiveness, cost-effect...

Descripción completa

Detalles Bibliográficos
Autores principales: Bellón, Juan Ángel, Conejo-Cerón, Sonia, Moreno-Peral, Patricia, King, Michael, Nazareth, Irwin, Martín-Pérez, Carlos, Fernández-Alonso, Carmen, Ballesta-Rodríguez, María Isabel, Fernández, Anna, Aiarzaguena, José María, Montón-Franco, Carmen, Ibanez-Casas, Inmaculada, Rodríguez-Sánchez, Emiliano, Rodríguez-Bayón, Antonina, Serrano-Blanco, Antoni, Gómez, María Cruz, LaFuente, Pilar, del Mar Muñoz-García, María, Mínguez-Gonzalo, Pilar, Araujo, Luz, Palao, Diego, Espinosa-Cifuentes, Maite, Zubiaga, Fernando, Navas-Campaña, Desirée, Mendive, Juan, Aranda-Regules, Jose Manuel, Rodriguez-Morejón, Alberto, Salvador-Carulla, Luis, de Dios Luna, Juan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698147/
https://www.ncbi.nlm.nih.gov/pubmed/23782553
http://dx.doi.org/10.1186/1471-244X-13-171
_version_ 1782275252219281408
author Bellón, Juan Ángel
Conejo-Cerón, Sonia
Moreno-Peral, Patricia
King, Michael
Nazareth, Irwin
Martín-Pérez, Carlos
Fernández-Alonso, Carmen
Ballesta-Rodríguez, María Isabel
Fernández, Anna
Aiarzaguena, José María
Montón-Franco, Carmen
Ibanez-Casas, Inmaculada
Rodríguez-Sánchez, Emiliano
Rodríguez-Bayón, Antonina
Serrano-Blanco, Antoni
Gómez, María Cruz
LaFuente, Pilar
del Mar Muñoz-García, María
Mínguez-Gonzalo, Pilar
Araujo, Luz
Palao, Diego
Espinosa-Cifuentes, Maite
Zubiaga, Fernando
Navas-Campaña, Desirée
Mendive, Juan
Aranda-Regules, Jose Manuel
Rodriguez-Morejón, Alberto
Salvador-Carulla, Luis
de Dios Luna, Juan
author_facet Bellón, Juan Ángel
Conejo-Cerón, Sonia
Moreno-Peral, Patricia
King, Michael
Nazareth, Irwin
Martín-Pérez, Carlos
Fernández-Alonso, Carmen
Ballesta-Rodríguez, María Isabel
Fernández, Anna
Aiarzaguena, José María
Montón-Franco, Carmen
Ibanez-Casas, Inmaculada
Rodríguez-Sánchez, Emiliano
Rodríguez-Bayón, Antonina
Serrano-Blanco, Antoni
Gómez, María Cruz
LaFuente, Pilar
del Mar Muñoz-García, María
Mínguez-Gonzalo, Pilar
Araujo, Luz
Palao, Diego
Espinosa-Cifuentes, Maite
Zubiaga, Fernando
Navas-Campaña, Desirée
Mendive, Juan
Aranda-Regules, Jose Manuel
Rodriguez-Morejón, Alberto
Salvador-Carulla, Luis
de Dios Luna, Juan
author_sort Bellón, Juan Ángel
collection PubMed
description BACKGROUND: The ‘predictD algorithm’ provides an estimate of the level and profile of risk of the onset of major depression in primary care attendees. This gives us the opportunity to develop interventions to prevent depression in a personalized way. We aim to evaluate the effectiveness, cost-effectiveness and cost-utility of a new intervention, personalized and implemented by family physicians (FPs), to prevent the onset of episodes of major depression. METHODS/DESIGN: This is a multicenter randomized controlled trial (RCT), with cluster assignment by health center and two parallel arms. Two interventions will be applied by FPs, usual care versus the new intervention predictD-CCRT. The latter has four components: a training workshop for FPs; communicating the level and profile of risk of depression; building up a tailored bio-psycho-family-social intervention by FPs to prevent depression; offering a booklet to prevent depression; and activating and empowering patients. We will recruit a systematic random sample of 3286 non-depressed adult patients (1643 in each trial arm), nested in 140 FPs and 70 health centers from 7 Spanish cities. All patients will be evaluated at baseline, 6, 12 and 18 months. The level and profile of risk of depression will be communicated to patients by the FPs in the intervention practices at baseline, 6 and 12 months. Our primary outcome will be the cumulative incidence of major depression (measured by CIDI each 6 months) over 18 months of follow-up. Secondary outcomes will be health-related quality of life (SF-12 and EuroQol), and measurements of cost-effectiveness and cost-utility. The inferences will be made at patient level. We shall undertake an intention-to-treat effectiveness analysis and will handle missing data using multiple imputations. We will perform multi-level logistic regressions and will adjust for the probability of the onset of major depression at 12 months measured at baseline as well as for unbalanced variables if appropriate. The economic evaluation will be approached from two perspectives, societal and health system. DISCUSSION: To our knowledge, this will be the first RCT of universal primary prevention for depression in adults and the first to test a personalized intervention implemented by FPs. We discuss possible biases as well as other limitations. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01151982
format Online
Article
Text
id pubmed-3698147
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-36981472013-07-02 Preventing the onset of major depression based on the level and profile of risk of primary care attendees: protocol of a cluster randomised trial (the predictD-CCRT study) Bellón, Juan Ángel Conejo-Cerón, Sonia Moreno-Peral, Patricia King, Michael Nazareth, Irwin Martín-Pérez, Carlos Fernández-Alonso, Carmen Ballesta-Rodríguez, María Isabel Fernández, Anna Aiarzaguena, José María Montón-Franco, Carmen Ibanez-Casas, Inmaculada Rodríguez-Sánchez, Emiliano Rodríguez-Bayón, Antonina Serrano-Blanco, Antoni Gómez, María Cruz LaFuente, Pilar del Mar Muñoz-García, María Mínguez-Gonzalo, Pilar Araujo, Luz Palao, Diego Espinosa-Cifuentes, Maite Zubiaga, Fernando Navas-Campaña, Desirée Mendive, Juan Aranda-Regules, Jose Manuel Rodriguez-Morejón, Alberto Salvador-Carulla, Luis de Dios Luna, Juan BMC Psychiatry Study Protocol BACKGROUND: The ‘predictD algorithm’ provides an estimate of the level and profile of risk of the onset of major depression in primary care attendees. This gives us the opportunity to develop interventions to prevent depression in a personalized way. We aim to evaluate the effectiveness, cost-effectiveness and cost-utility of a new intervention, personalized and implemented by family physicians (FPs), to prevent the onset of episodes of major depression. METHODS/DESIGN: This is a multicenter randomized controlled trial (RCT), with cluster assignment by health center and two parallel arms. Two interventions will be applied by FPs, usual care versus the new intervention predictD-CCRT. The latter has four components: a training workshop for FPs; communicating the level and profile of risk of depression; building up a tailored bio-psycho-family-social intervention by FPs to prevent depression; offering a booklet to prevent depression; and activating and empowering patients. We will recruit a systematic random sample of 3286 non-depressed adult patients (1643 in each trial arm), nested in 140 FPs and 70 health centers from 7 Spanish cities. All patients will be evaluated at baseline, 6, 12 and 18 months. The level and profile of risk of depression will be communicated to patients by the FPs in the intervention practices at baseline, 6 and 12 months. Our primary outcome will be the cumulative incidence of major depression (measured by CIDI each 6 months) over 18 months of follow-up. Secondary outcomes will be health-related quality of life (SF-12 and EuroQol), and measurements of cost-effectiveness and cost-utility. The inferences will be made at patient level. We shall undertake an intention-to-treat effectiveness analysis and will handle missing data using multiple imputations. We will perform multi-level logistic regressions and will adjust for the probability of the onset of major depression at 12 months measured at baseline as well as for unbalanced variables if appropriate. The economic evaluation will be approached from two perspectives, societal and health system. DISCUSSION: To our knowledge, this will be the first RCT of universal primary prevention for depression in adults and the first to test a personalized intervention implemented by FPs. We discuss possible biases as well as other limitations. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01151982 BioMed Central 2013-06-19 /pmc/articles/PMC3698147/ /pubmed/23782553 http://dx.doi.org/10.1186/1471-244X-13-171 Text en Copyright © 2013 Bellón et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Study Protocol
Bellón, Juan Ángel
Conejo-Cerón, Sonia
Moreno-Peral, Patricia
King, Michael
Nazareth, Irwin
Martín-Pérez, Carlos
Fernández-Alonso, Carmen
Ballesta-Rodríguez, María Isabel
Fernández, Anna
Aiarzaguena, José María
Montón-Franco, Carmen
Ibanez-Casas, Inmaculada
Rodríguez-Sánchez, Emiliano
Rodríguez-Bayón, Antonina
Serrano-Blanco, Antoni
Gómez, María Cruz
LaFuente, Pilar
del Mar Muñoz-García, María
Mínguez-Gonzalo, Pilar
Araujo, Luz
Palao, Diego
Espinosa-Cifuentes, Maite
Zubiaga, Fernando
Navas-Campaña, Desirée
Mendive, Juan
Aranda-Regules, Jose Manuel
Rodriguez-Morejón, Alberto
Salvador-Carulla, Luis
de Dios Luna, Juan
Preventing the onset of major depression based on the level and profile of risk of primary care attendees: protocol of a cluster randomised trial (the predictD-CCRT study)
title Preventing the onset of major depression based on the level and profile of risk of primary care attendees: protocol of a cluster randomised trial (the predictD-CCRT study)
title_full Preventing the onset of major depression based on the level and profile of risk of primary care attendees: protocol of a cluster randomised trial (the predictD-CCRT study)
title_fullStr Preventing the onset of major depression based on the level and profile of risk of primary care attendees: protocol of a cluster randomised trial (the predictD-CCRT study)
title_full_unstemmed Preventing the onset of major depression based on the level and profile of risk of primary care attendees: protocol of a cluster randomised trial (the predictD-CCRT study)
title_short Preventing the onset of major depression based on the level and profile of risk of primary care attendees: protocol of a cluster randomised trial (the predictD-CCRT study)
title_sort preventing the onset of major depression based on the level and profile of risk of primary care attendees: protocol of a cluster randomised trial (the predictd-ccrt study)
topic Study Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698147/
https://www.ncbi.nlm.nih.gov/pubmed/23782553
http://dx.doi.org/10.1186/1471-244X-13-171
work_keys_str_mv AT bellonjuanangel preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT conejoceronsonia preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT morenoperalpatricia preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT kingmichael preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT nazarethirwin preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT martinperezcarlos preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT fernandezalonsocarmen preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT ballestarodriguezmariaisabel preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT fernandezanna preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT aiarzaguenajosemaria preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT montonfrancocarmen preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT ibanezcasasinmaculada preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT rodriguezsanchezemiliano preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT rodriguezbayonantonina preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT serranoblancoantoni preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT gomezmariacruz preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT lafuentepilar preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT delmarmunozgarciamaria preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT minguezgonzalopilar preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT araujoluz preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT palaodiego preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT espinosacifuentesmaite preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT zubiagafernando preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT navascampanadesiree preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT mendivejuan preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT arandaregulesjosemanuel preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT rodriguezmorejonalberto preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT salvadorcarullaluis preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy
AT dedioslunajuan preventingtheonsetofmajordepressionbasedonthelevelandprofileofriskofprimarycareattendeesprotocolofaclusterrandomisedtrialthepredictdccrtstudy