Cargando…

Saliva sampling in global clinical studies: the impact of low sampling volume on performance of DNA in downstream genotyping experiments

BACKGROUND: The collection of viable DNA samples is an essential element of any genetics research programme. Biological samples for DNA purification are now routinely collected in many studies with a variety of sampling methods available. Initial observation in this study suggested a reduced genotyp...

Descripción completa

Detalles Bibliográficos
Autores principales: Pulford, David J, Mosteller, Michael, Briley, J David, Johansson, Kelley W, Nelsen, Anita J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698156/
https://www.ncbi.nlm.nih.gov/pubmed/23759220
http://dx.doi.org/10.1186/1755-8794-6-20
Descripción
Sumario:BACKGROUND: The collection of viable DNA samples is an essential element of any genetics research programme. Biological samples for DNA purification are now routinely collected in many studies with a variety of sampling methods available. Initial observation in this study suggested a reduced genotyping success rate of some saliva derived DNA samples when compared to blood derived DNA samples prompting further investigation. METHODS: Genotyping success rate was investigated to assess the suitability of using saliva samples in future safety and efficacy pharmacogenetics experiments. The Oragene® OG-300 DNA Self-Collection kit was used to collect and extract DNA from saliva from 1468 subjects enrolled in global clinical studies. Statistical analysis evaluated the impact of saliva sample volume of collection on the quality, yield, concentration and performance of saliva DNA in genotyping assays. RESULTS: Across 13 global clinical studies that utilized the Oragene® OG-300 DNA Self-Collection kit there was variability in the volume of saliva sample collection with ~31% of participants providing 0.5 mL of saliva, rather than the recommended 2 mL. While the majority of saliva DNA samples provided high quality genotype data, collection of 0.5 mL volumes of saliva contributed to DNA samples being significantly less likely to pass genotyping quality control standards. Assessment of DNA sample characteristics that may influence genotyping outcomes indicated that saliva sample volume, DNA purity and turbidity were independently associated with sample genotype pass rate, but that saliva collection volume had the greatest effect. CONCLUSION: When employing saliva sampling to obtain DNA, it is important to encourage all study participants to provide sufficient sample to minimize potential loss of data in downstream genotyping experiments.