Cargando…

Characterization of the Pichia pastoris Protein-O-mannosyltransferase Gene Family

The methylotrophic yeast, Pichia pastoris , is an important organism used for the production of therapeutic proteins. However, the presence of fungal-like glycans, either N-linked or O-linked, can elicit an immune response or enable the expressed protein to bind to mannose receptors, thus reducing t...

Descripción completa

Detalles Bibliográficos
Autores principales: Nett, Juergen H., Cook, W. James, Chen, Ming-Tang, Davidson, Robert C., Bobrowicz, Piotr, Kett, Warren, Brevnova, Elena, Potgieter, Thomas I., Mellon, Mark T., Prinz, Bianka, Choi, Byung-Kwon, Zha, Dongxing, Burnina, Irina, Bukowski, John T., Du, Min, Wildt, Stefan, Hamilton, Stephen R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698189/
https://www.ncbi.nlm.nih.gov/pubmed/23840891
http://dx.doi.org/10.1371/journal.pone.0068325
Descripción
Sumario:The methylotrophic yeast, Pichia pastoris , is an important organism used for the production of therapeutic proteins. However, the presence of fungal-like glycans, either N-linked or O-linked, can elicit an immune response or enable the expressed protein to bind to mannose receptors, thus reducing their efficacy. Previously we have reported the elimination of β-linked glycans in this organism. In the current report we have focused on reducing the O-linked mannose content of proteins produced in P . pastoris , thereby reducing the potential to bind to mannose receptors. The initial step in the synthesis of O-linked glycans in P . pastoris is the transfer of mannose from dolichol-phosphomannose to a target protein in the yeast secretory pathway by members of the protein-O-mannosyltransferase (PMT) family. In this report we identify and characterize the members of the P . pastoris PMT family. Like Candida albicans, P . pastoris has five PMT genes. Based on sequence homology, these PMTs can be grouped into three sub-families, with both PMT1 and PMT2 sub-families possessing two members each (PMT1 and PMT5, and PMT2 and PMT6, respectively). The remaining sub-family, PMT4, has only one member (PMT4). Through gene knockouts we show that PMT1 and PMT2 each play a significant role in O-glycosylation. Both, by gene knockouts and the use of Pmt inhibitors we were able to significantly reduce not only the degree of O-mannosylation, but also the chain-length of these glycans. Taken together, this reduction of O-glycosylation represents an important step forward in developing the P . pastoris platform as a suitable system for the production of therapeutic glycoproteins.