Cargando…

The role of ear stone size in hair cell acoustic sensory transduction

Hearing and bodily balance are different sensations initiated by a common mechanism. Both sound- and head movement-dependent mechanical displacement are converted into electrical signals by the sensory hair cells. The saccule and utricle inner ear organs, in combination with their central projection...

Descripción completa

Detalles Bibliográficos
Autores principales: Inoue, Maya, Tanimoto, Masashi, Oda, Yoichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3698489/
https://www.ncbi.nlm.nih.gov/pubmed/23817603
http://dx.doi.org/10.1038/srep02114
Descripción
Sumario:Hearing and bodily balance are different sensations initiated by a common mechanism. Both sound- and head movement-dependent mechanical displacement are converted into electrical signals by the sensory hair cells. The saccule and utricle inner ear organs, in combination with their central projections to the hindbrain, are considered essential in fish for separating auditory and vestibular stimuli. Here, we established an in vivo method in larval zebrafish to manipulate otolith growth. We found that the saccule containing a large otolith is necessary to detect sound, whereas the utricle containing a small otolith is not sufficient. Otolith removal and relocation altered otolith growth such that utricles with experimentally enlarged otoliths acquired the sense of sound. These results show that otolith biomineralization occurs in a region-specific manner, and suggest that regulation of otolith size in the larval zebrafish ear is crucial to differentially sense auditory and vestibular information.