Cargando…

Cigarette smoke induces nuclear translocation of heme oxygenase 1 (HO-1) in prostate cancer cells: Nuclear HO-1 promotes vascular endothelial growth factor secretion

Prostate cancer is the second leading cause of male-cancer related death in the United States. Despite a number of evidence-based studies which strongly suggest an association between cigarette smoking and prostate cancer, the underlying biological mechanism is largely unknown. Heme oxygenase 1 (HO-...

Descripción completa

Detalles Bibliográficos
Autores principales: BIRRANE, GABRIEL, LI, HUCHUN, YANG, SUPING, TACHADO, SOUVENIR D., SENG, SEYHA
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699615/
https://www.ncbi.nlm.nih.gov/pubmed/23591596
http://dx.doi.org/10.3892/ijo.2013.1910
Descripción
Sumario:Prostate cancer is the second leading cause of male-cancer related death in the United States. Despite a number of evidence-based studies which strongly suggest an association between cigarette smoking and prostate cancer, the underlying biological mechanism is largely unknown. Heme oxygenase 1 (HO-1) has been implicated in maintaining cellular homeostasis, but also in tumor angiogenesis. Nuclear HO-1 protein expression has been observed in various types of tumors including prostate cancer. These studies, however, were reported as clinical and pathological observations, and failed to investigate nuclear HO-1 at the molecular level in cancer. The present study explores the relationship between cigarette smoke and nuclear HO-1-modulated promotion of vascular endothelial growth factor (VEGF) secretion. We have demonstrated that cigarette smoke medium (SM)-induced HO-1 mRNA expression and upregulated HO-1 protein levels in the prostate cancer cell lines DU145 and PC3. We also observed that SM significantly induced nuclear expression of HO-1, and enhanced secretion of VEGF in cells. Nuclear-directed expression of HO-1 activated the transcriptional activity of VEGF and promoted VEGF secretion in prostate cancer cells. This study provides new insights into the molecular mechanism by which cigarette smoke-induced nuclear translocation of HO-1 promotes VEGF secretion in prostate cancer cells. Nuclear HO-1 may, therefore, constitute an attractive therapeutic target to inhibit angiogenesis and the progression of prostate cancer.