Cargando…

Assessment of the Efficacy of Chelate-Assisted Phytoextraction of Lead by Coffeeweed (Sesbania exaltata Raf.)

Lead (Pb), depending upon the reactant surface, pH, redox potential and other factors can bind tightly to the soil with a retention time of many centuries. Soil-metal interactions by sorption, precipitation and complexation processes, and differences between plant species in metal uptake efficiency,...

Descripción completa

Detalles Bibliográficos
Autores principales: Miller, Gloria, Begonia, Gregorio, Begonia, Maria, Ntoni, Jennifer, Hundley, Oscar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3700004/
https://www.ncbi.nlm.nih.gov/pubmed/19151439
_version_ 1782275477905342464
author Miller, Gloria
Begonia, Gregorio
Begonia, Maria
Ntoni, Jennifer
Hundley, Oscar
author_facet Miller, Gloria
Begonia, Gregorio
Begonia, Maria
Ntoni, Jennifer
Hundley, Oscar
author_sort Miller, Gloria
collection PubMed
description Lead (Pb), depending upon the reactant surface, pH, redox potential and other factors can bind tightly to the soil with a retention time of many centuries. Soil-metal interactions by sorption, precipitation and complexation processes, and differences between plant species in metal uptake efficiency, transport, and susceptibility make a general prediction of soil metal bioavailability and risks of plant metal toxicity difficult. Moreover, the tight binding characteristic of Pb to soils and plant materials make a significant portion of Pb unavailable for uptake by plants. This experiment was conducted to determine whether the addition of ethylenediaminetetraacetic acid (EDTA), ethylene glycol tetraacetic acid (EGTA), or acetic acid (HAc) can enhance the phytoextraction of Pb by making the Pb soluble and more bioavailable for uptake by coffeeweed (Sesbania exaltata Raf.). Also we wanted to assess the efficacy of chelates in facilitating translocation of the metal into the above-ground biomass of this plant. To test the effect of chelates on Pb solubility, 2 g of Pb-spiked soil (1000 mg Pb/kg dry soil) were added to each 15 mL centrifuge tube. Chelates (EDTA, EGTA, HAc) in a 1:1 ratio with the metal, or distilled deionized water were then added. Samples were shaken on a platform shaker then centrifuged at the end of several time periods. Supernatants were filtered with a 0.45 μm filter and quantified by inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine soluble Pb concentrations. Results revealed that EDTA was the most effective in bringing Pb into solution, and that maximum solubility was reached 6 days after chelate amendment. Additionally, a greenhouse experiment was conducted by planting Sesbania seeds in plastic tubes containing top soil and peat (2:1, v:v) spiked with various levels (0, 1000, 2000 mg Pb/kg dry soil) of lead nitrate. At six weeks after emergence, aqueous solutions of EDTA and/or HAc (in a 1:1 ratio with the metal) or distilled deionized water were applied to the root zones. Plants were harvested at 6 days after chelate addition to coincide with the duration of maximum metal solubility previously determined in this study. Results of the greenhouse experiment showed that coffeeweed was relatively tolerant to moderate levels of Pb and chelates as shown by very slight reductions in root and no discernable effects on shoot biomass. Root Pb concentrations increased with increasing levels of soil-applied Pb. Further increases in root Pb concentrations were attributed to chelate amendments. In the absence of chelates, translocation of Pb from roots to shoots was minimal. However, translocation dramatically increased in treatments with EDTA alone or in combination with HAc. Overall, the results of this study indicated that depending on the nature and type of Pb-contaminated soil being remediated, the bioavailability and uptake of Pb by coffeeweed can be enhanced by amending the soil with chelates especially after the plants have reached maximum biomass.
format Online
Article
Text
id pubmed-3700004
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-37000042013-07-03 Assessment of the Efficacy of Chelate-Assisted Phytoextraction of Lead by Coffeeweed (Sesbania exaltata Raf.) Miller, Gloria Begonia, Gregorio Begonia, Maria Ntoni, Jennifer Hundley, Oscar Int J Environ Res Public Health Articles Lead (Pb), depending upon the reactant surface, pH, redox potential and other factors can bind tightly to the soil with a retention time of many centuries. Soil-metal interactions by sorption, precipitation and complexation processes, and differences between plant species in metal uptake efficiency, transport, and susceptibility make a general prediction of soil metal bioavailability and risks of plant metal toxicity difficult. Moreover, the tight binding characteristic of Pb to soils and plant materials make a significant portion of Pb unavailable for uptake by plants. This experiment was conducted to determine whether the addition of ethylenediaminetetraacetic acid (EDTA), ethylene glycol tetraacetic acid (EGTA), or acetic acid (HAc) can enhance the phytoextraction of Pb by making the Pb soluble and more bioavailable for uptake by coffeeweed (Sesbania exaltata Raf.). Also we wanted to assess the efficacy of chelates in facilitating translocation of the metal into the above-ground biomass of this plant. To test the effect of chelates on Pb solubility, 2 g of Pb-spiked soil (1000 mg Pb/kg dry soil) were added to each 15 mL centrifuge tube. Chelates (EDTA, EGTA, HAc) in a 1:1 ratio with the metal, or distilled deionized water were then added. Samples were shaken on a platform shaker then centrifuged at the end of several time periods. Supernatants were filtered with a 0.45 μm filter and quantified by inductively coupled plasma-optical emission spectrometry (ICP-OES) to determine soluble Pb concentrations. Results revealed that EDTA was the most effective in bringing Pb into solution, and that maximum solubility was reached 6 days after chelate amendment. Additionally, a greenhouse experiment was conducted by planting Sesbania seeds in plastic tubes containing top soil and peat (2:1, v:v) spiked with various levels (0, 1000, 2000 mg Pb/kg dry soil) of lead nitrate. At six weeks after emergence, aqueous solutions of EDTA and/or HAc (in a 1:1 ratio with the metal) or distilled deionized water were applied to the root zones. Plants were harvested at 6 days after chelate addition to coincide with the duration of maximum metal solubility previously determined in this study. Results of the greenhouse experiment showed that coffeeweed was relatively tolerant to moderate levels of Pb and chelates as shown by very slight reductions in root and no discernable effects on shoot biomass. Root Pb concentrations increased with increasing levels of soil-applied Pb. Further increases in root Pb concentrations were attributed to chelate amendments. In the absence of chelates, translocation of Pb from roots to shoots was minimal. However, translocation dramatically increased in treatments with EDTA alone or in combination with HAc. Overall, the results of this study indicated that depending on the nature and type of Pb-contaminated soil being remediated, the bioavailability and uptake of Pb by coffeeweed can be enhanced by amending the soil with chelates especially after the plants have reached maximum biomass. Molecular Diversity Preservation International (MDPI) 2008-12 2008-12-31 /pmc/articles/PMC3700004/ /pubmed/19151439 Text en © 2008 MDPI All rights reserved.
spellingShingle Articles
Miller, Gloria
Begonia, Gregorio
Begonia, Maria
Ntoni, Jennifer
Hundley, Oscar
Assessment of the Efficacy of Chelate-Assisted Phytoextraction of Lead by Coffeeweed (Sesbania exaltata Raf.)
title Assessment of the Efficacy of Chelate-Assisted Phytoextraction of Lead by Coffeeweed (Sesbania exaltata Raf.)
title_full Assessment of the Efficacy of Chelate-Assisted Phytoextraction of Lead by Coffeeweed (Sesbania exaltata Raf.)
title_fullStr Assessment of the Efficacy of Chelate-Assisted Phytoextraction of Lead by Coffeeweed (Sesbania exaltata Raf.)
title_full_unstemmed Assessment of the Efficacy of Chelate-Assisted Phytoextraction of Lead by Coffeeweed (Sesbania exaltata Raf.)
title_short Assessment of the Efficacy of Chelate-Assisted Phytoextraction of Lead by Coffeeweed (Sesbania exaltata Raf.)
title_sort assessment of the efficacy of chelate-assisted phytoextraction of lead by coffeeweed (sesbania exaltata raf.)
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3700004/
https://www.ncbi.nlm.nih.gov/pubmed/19151439
work_keys_str_mv AT millergloria assessmentoftheefficacyofchelateassistedphytoextractionofleadbycoffeeweedsesbaniaexaltataraf
AT begoniagregorio assessmentoftheefficacyofchelateassistedphytoextractionofleadbycoffeeweedsesbaniaexaltataraf
AT begoniamaria assessmentoftheefficacyofchelateassistedphytoextractionofleadbycoffeeweedsesbaniaexaltataraf
AT ntonijennifer assessmentoftheefficacyofchelateassistedphytoextractionofleadbycoffeeweedsesbaniaexaltataraf
AT hundleyoscar assessmentoftheefficacyofchelateassistedphytoextractionofleadbycoffeeweedsesbaniaexaltataraf