Cargando…
Pyridostatin analogues promote telomere dysfunction and long-term growth inhibition in human cancer cells
The synthesis, biophysical and biological evaluation of a series of G-quadruplex interacting small molecules based on a N,N′-bis(quinolinyl)pyridine-2,6-dicarboxamide scaffold is described. The synthetic analogues were evaluated for their ability to stabilize telomeric G-quadruplex DNA, some of whic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3700226/ https://www.ncbi.nlm.nih.gov/pubmed/22790277 http://dx.doi.org/10.1039/c2ob25830g |
Sumario: | The synthesis, biophysical and biological evaluation of a series of G-quadruplex interacting small molecules based on a N,N′-bis(quinolinyl)pyridine-2,6-dicarboxamide scaffold is described. The synthetic analogues were evaluated for their ability to stabilize telomeric G-quadruplex DNA, some of which showed very high stabilization potential associated with high selectivity over double-stranded DNA. The compounds exhibited growth arrest of cancer cells with detectable selectivity over normal cells. Long-time growth arrest was accompanied by senescence, where telomeric dysfunction is a predominant mechanism together with the accumulation of restricted DNA damage sites in the genome. Our data emphasize the potential of a senescence-mediated anticancer therapy through the use of G-quadruplex targeting small molecules based on the molecular framework of pyridostatin. |
---|