Cargando…
miR-989 Is Required for Border Cell Migration in the Drosophila Ovary
microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by destabilizing target transcripts and/or inhibiting their translation. miRNAs are thought to have roles in buffering gene expression to confer robustness. miRNAs have been shown to play important roles during tissue develop...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3700948/ https://www.ncbi.nlm.nih.gov/pubmed/23843983 http://dx.doi.org/10.1371/journal.pone.0067075 |
Sumario: | microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by destabilizing target transcripts and/or inhibiting their translation. miRNAs are thought to have roles in buffering gene expression to confer robustness. miRNAs have been shown to play important roles during tissue development to control cell proliferation, differentiation and morphogenesis. Many miRNAs are expressed in the germ line of Drosophila, and functions have been reported for a few miRNAs in maintenance of stem cell proliferation during oogenesis. Here, we analyse the function of Drosophila miR-989 in oogenesis. miR-989 is abundant in ovaries. Mutants lacking miR-989 did not display gross abnormalities affecting egg chamber formation or maturation. However, the migration of the border cell cluster was severely delayed in miR-989 mutant egg chambers. We demonstrate that miR-989 function is required in the somatic cells in the egg chamber, not in germ line cells for border cell migration. Loss of miR-989 from a fraction of the border cell cluster was sufficient to impair cluster migration as a whole, suggesting a role in border cells. Gene ontology analysis reveals that many predicted miR-989 target mRNAs are implicated in regulating cell migration, cell projection morphogenesis, cell adhesion as well as receptor tyrosine kinase and ecdysone signalling, consistent with an important regulatory role for miR-989 in border cell migration. |
---|