Cargando…
Directional Variance Adjustment: Bias Reduction in Covariance Matrices Based on Factor Analysis with an Application to Portfolio Optimization
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a...
Autores principales: | Bartz, Daniel, Hatrick, Kerr, Hesse, Christian W., Müller, Klaus-Robert, Lemm, Steven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701014/ https://www.ncbi.nlm.nih.gov/pubmed/23844016 http://dx.doi.org/10.1371/journal.pone.0067503 |
Ejemplares similares
-
The effect of using approximate gametic variance covariance matrices on marker assisted selection by BLUP
por: Totir, Liviu R, et al.
Publicado: (2004) -
Bias and sampling covariances of estimates of variance components due to maternal effects
por: Meyer, K
Publicado: (1992) -
Optimally adjusted last cluster for prediction based on balancing the bias and variance by bootstrapping
por: Kim, Jeongwoo
Publicado: (2019) -
Split Bregman iteration for multi-period mean variance portfolio optimization
por: Corsaro, Stefania, et al.
Publicado: (2021) -
Mean-variance portfolio analysis data for optimizing community-based photovoltaic investment
por: Shakouri, Mahmoud, et al.
Publicado: (2016)