Cargando…
Mesenchymal Stem Cells Improve Medullary Inflammation and Fibrosis after Revascularization of Swine Atherosclerotic Renal Artery Stenosis
Atherosclerotic renal artery stenosis (ARAS) raises blood pressure and can reduce kidney function. Revascularization of the stenotic renal artery alone does not restore renal medullary structure and function. This study tested the hypothesis that addition of mesenchymal stem cells (MSC) to percutane...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701050/ https://www.ncbi.nlm.nih.gov/pubmed/23844014 http://dx.doi.org/10.1371/journal.pone.0067474 |
_version_ | 1782275585771307008 |
---|---|
author | Ebrahimi, Behzad Eirin, Alfonso Li, Zilun Zhu, Xiang-Yang Zhang, Xin Lerman, Amir Textor, Stephen C. Lerman, Lilach O. |
author_facet | Ebrahimi, Behzad Eirin, Alfonso Li, Zilun Zhu, Xiang-Yang Zhang, Xin Lerman, Amir Textor, Stephen C. Lerman, Lilach O. |
author_sort | Ebrahimi, Behzad |
collection | PubMed |
description | Atherosclerotic renal artery stenosis (ARAS) raises blood pressure and can reduce kidney function. Revascularization of the stenotic renal artery alone does not restore renal medullary structure and function. This study tested the hypothesis that addition of mesenchymal stem cells (MSC) to percutaneous transluminal renal angioplasty (PTRA) can restore stenotic-kidney medullary tubular transport function and attenuate its remodeling. Twenty-seven swine were divided into three ARAS (high-cholesterol diet and renal artery stenosis) and a normal control group. Six weeks after ARAS induction, two groups were treated with PTRA alone or PTRA supplemented with adipose-tissue-derived MSC (10×10(6) cells intra-renal). Multi-detector computed tomography and blood-oxygenation-level-dependent (BOLD) MRI studies were performed 4 weeks later to assess kidney hemodynamics and function, and tissue collected a few days later for histology and micro-CT imaging. PTRA effectively decreased blood pressure, yet medullary vascular density remained low. Addition of MSC improved medullary vascularization in ARAS+PTRA+MSC and increased angiogenic signaling, including protein expression of vascular endothelial growth-factor, its receptor (FLK-1), and hypoxia-inducible factor-1α. ARAS+PTRA+MSC also showed attenuated inflammation, although oxidative-stress remained elevated. BOLD-MRI indicated that MSC normalized oxygen-dependent tubular response to furosemide (-4.3±0.9, −0.1±0.4, −1.6±0.9 and −3.6±1.0 s(−1) in Normal, ARAS, ARAS+PTRA and ARAS+PTRA+MSC, respectively, p<0.05), which correlated with a decrease in medullary tubular injury score (R(2) = 0.33, p = 0.02). Therefore, adjunctive MSC delivery in addition to PTRA reduces inflammation, fibrogenesis and vascular remodeling, and restores oxygen-dependent tubular function in the stenotic-kidney medulla, although additional interventions might be required to reduce oxidative-stress. This study supports development of cell-based strategies for renal protection in ARAS. |
format | Online Article Text |
id | pubmed-3701050 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37010502013-07-10 Mesenchymal Stem Cells Improve Medullary Inflammation and Fibrosis after Revascularization of Swine Atherosclerotic Renal Artery Stenosis Ebrahimi, Behzad Eirin, Alfonso Li, Zilun Zhu, Xiang-Yang Zhang, Xin Lerman, Amir Textor, Stephen C. Lerman, Lilach O. PLoS One Research Article Atherosclerotic renal artery stenosis (ARAS) raises blood pressure and can reduce kidney function. Revascularization of the stenotic renal artery alone does not restore renal medullary structure and function. This study tested the hypothesis that addition of mesenchymal stem cells (MSC) to percutaneous transluminal renal angioplasty (PTRA) can restore stenotic-kidney medullary tubular transport function and attenuate its remodeling. Twenty-seven swine were divided into three ARAS (high-cholesterol diet and renal artery stenosis) and a normal control group. Six weeks after ARAS induction, two groups were treated with PTRA alone or PTRA supplemented with adipose-tissue-derived MSC (10×10(6) cells intra-renal). Multi-detector computed tomography and blood-oxygenation-level-dependent (BOLD) MRI studies were performed 4 weeks later to assess kidney hemodynamics and function, and tissue collected a few days later for histology and micro-CT imaging. PTRA effectively decreased blood pressure, yet medullary vascular density remained low. Addition of MSC improved medullary vascularization in ARAS+PTRA+MSC and increased angiogenic signaling, including protein expression of vascular endothelial growth-factor, its receptor (FLK-1), and hypoxia-inducible factor-1α. ARAS+PTRA+MSC also showed attenuated inflammation, although oxidative-stress remained elevated. BOLD-MRI indicated that MSC normalized oxygen-dependent tubular response to furosemide (-4.3±0.9, −0.1±0.4, −1.6±0.9 and −3.6±1.0 s(−1) in Normal, ARAS, ARAS+PTRA and ARAS+PTRA+MSC, respectively, p<0.05), which correlated with a decrease in medullary tubular injury score (R(2) = 0.33, p = 0.02). Therefore, adjunctive MSC delivery in addition to PTRA reduces inflammation, fibrogenesis and vascular remodeling, and restores oxygen-dependent tubular function in the stenotic-kidney medulla, although additional interventions might be required to reduce oxidative-stress. This study supports development of cell-based strategies for renal protection in ARAS. Public Library of Science 2013-07-03 /pmc/articles/PMC3701050/ /pubmed/23844014 http://dx.doi.org/10.1371/journal.pone.0067474 Text en © 2013 Ebrahimi et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ebrahimi, Behzad Eirin, Alfonso Li, Zilun Zhu, Xiang-Yang Zhang, Xin Lerman, Amir Textor, Stephen C. Lerman, Lilach O. Mesenchymal Stem Cells Improve Medullary Inflammation and Fibrosis after Revascularization of Swine Atherosclerotic Renal Artery Stenosis |
title | Mesenchymal Stem Cells Improve Medullary Inflammation and Fibrosis after Revascularization of Swine Atherosclerotic Renal Artery Stenosis |
title_full | Mesenchymal Stem Cells Improve Medullary Inflammation and Fibrosis after Revascularization of Swine Atherosclerotic Renal Artery Stenosis |
title_fullStr | Mesenchymal Stem Cells Improve Medullary Inflammation and Fibrosis after Revascularization of Swine Atherosclerotic Renal Artery Stenosis |
title_full_unstemmed | Mesenchymal Stem Cells Improve Medullary Inflammation and Fibrosis after Revascularization of Swine Atherosclerotic Renal Artery Stenosis |
title_short | Mesenchymal Stem Cells Improve Medullary Inflammation and Fibrosis after Revascularization of Swine Atherosclerotic Renal Artery Stenosis |
title_sort | mesenchymal stem cells improve medullary inflammation and fibrosis after revascularization of swine atherosclerotic renal artery stenosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701050/ https://www.ncbi.nlm.nih.gov/pubmed/23844014 http://dx.doi.org/10.1371/journal.pone.0067474 |
work_keys_str_mv | AT ebrahimibehzad mesenchymalstemcellsimprovemedullaryinflammationandfibrosisafterrevascularizationofswineatheroscleroticrenalarterystenosis AT eirinalfonso mesenchymalstemcellsimprovemedullaryinflammationandfibrosisafterrevascularizationofswineatheroscleroticrenalarterystenosis AT lizilun mesenchymalstemcellsimprovemedullaryinflammationandfibrosisafterrevascularizationofswineatheroscleroticrenalarterystenosis AT zhuxiangyang mesenchymalstemcellsimprovemedullaryinflammationandfibrosisafterrevascularizationofswineatheroscleroticrenalarterystenosis AT zhangxin mesenchymalstemcellsimprovemedullaryinflammationandfibrosisafterrevascularizationofswineatheroscleroticrenalarterystenosis AT lermanamir mesenchymalstemcellsimprovemedullaryinflammationandfibrosisafterrevascularizationofswineatheroscleroticrenalarterystenosis AT textorstephenc mesenchymalstemcellsimprovemedullaryinflammationandfibrosisafterrevascularizationofswineatheroscleroticrenalarterystenosis AT lermanlilacho mesenchymalstemcellsimprovemedullaryinflammationandfibrosisafterrevascularizationofswineatheroscleroticrenalarterystenosis |