Cargando…
Principled missing data methods for researchers
The impact of missing data on quantitative research can be serious, leading to biased estimates of parameters, loss of information, decreased statistical power, increased standard errors, and weakened generalizability of findings. In this paper, we discussed and demonstrated three principled missing...
Autores principales: | Dong, Yiran, Peng, Chao-Ying Joanne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3701793/ https://www.ncbi.nlm.nih.gov/pubmed/23853744 http://dx.doi.org/10.1186/2193-1801-2-222 |
Ejemplares similares
-
Missing data and multiple imputation in clinical epidemiological research
por: Pedersen, Alma B, et al.
Publicado: (2017) -
Reviewing the research methods literature: principles and strategies illustrated by a systematic overview of sampling in qualitative research
por: Gentles, Stephen J., et al.
Publicado: (2016) -
An efficient ensemble method for missing value imputation in microarray gene expression data
por: Zhu, Xinshan, et al.
Publicado: (2021) -
Enabling network inference methods to handle missing data and outliers
por: Folch-Fortuny, Abel, et al.
Publicado: (2015) -
A framework for handling missing accelerometer outcome data in trials
por: Tackney, Mia S., et al.
Publicado: (2021)