Cargando…
Mining breast cancer genes with a network based noise-tolerant approach
BACKGROUND: Mining novel breast cancer genes is an important task in breast cancer research. Many approaches prioritize candidate genes based on their similarity to known cancer genes, usually by integrating multiple data sources. However, different types of data often contain varying degrees of noi...
Autores principales: | Nie, Yaling, Yu, Jingkai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3702465/ https://www.ncbi.nlm.nih.gov/pubmed/23799982 http://dx.doi.org/10.1186/1752-0509-7-49 |
Ejemplares similares
-
Fusing literature and full network data improves disease similarity computation
por: Li, Ping, et al.
Publicado: (2016) -
An Effective Method to Identify Shared Pathways and Common Factors among Neurodegenerative Diseases
por: Li, Ping, et al.
Publicado: (2015) -
Epi-GTBN: an approach of epistasis mining based on genetic Tabu algorithm and Bayesian network
por: Guo, Yang, et al.
Publicado: (2019) -
A Noise-Tolerating Gene Association Network Uncovering an Oncogenic Regulatory Motif in Lymphoma Transcriptomics
por: Fang, Wei-Quan, et al.
Publicado: (2023) -
Integrating text mining, data mining, and network analysis for identifying genetic breast cancer trends
por: Jurca, Gabriela, et al.
Publicado: (2016)