Cargando…
Simultaneous Reduction in Noise and Cross-Contamination Artifacts for Dual-Energy X-Ray CT
Purpose. Dual-energy CT imaging tends to suffer from much lower signal-to-noise ratio than single-energy CT. In this paper, we propose an improved anticorrelated noise reduction (ACNR) method without causing cross-contamination artifacts. Methods. The proposed algorithm diffuses both basis material...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703721/ https://www.ncbi.nlm.nih.gov/pubmed/23862145 http://dx.doi.org/10.1155/2013/417278 |
_version_ | 1782275939340648448 |
---|---|
author | Li, Baojun Li, Baohong Luo, Jack Tang, Peng Mao, Jiandong Wu, Xiaoye |
author_facet | Li, Baojun Li, Baohong Luo, Jack Tang, Peng Mao, Jiandong Wu, Xiaoye |
author_sort | Li, Baojun |
collection | PubMed |
description | Purpose. Dual-energy CT imaging tends to suffer from much lower signal-to-noise ratio than single-energy CT. In this paper, we propose an improved anticorrelated noise reduction (ACNR) method without causing cross-contamination artifacts. Methods. The proposed algorithm diffuses both basis material density images (e.g., water and iodine) at the same time using a novel correlated diffusion algorithm. The algorithm has been compared to the original ACNR algorithm in a contrast-enhanced, IRB-approved patient study. Material density accuracy and noise reduction are quantitatively evaluated by the percent density error and the percent noise reduction. Results. Both algorithms have significantly reduced the noises of basis material density images in all cases. The average percent noise reduction is 69.3% and 66.5% with the ACNR algorithm and the proposed algorithm, respectively. However, the ACNR algorithm alters the original material density by an average of 13% (or 2.18 mg/cc) with a maximum of 58.7% (or 8.97 mg/cc) in this study. This is evident in the water density images as massive cross-contaminations are seen in all five clinical cases. On the contrary, the proposed algorithm only changes the mean density by 2.4% (or 0.69 mg/cc) with a maximum of 7.6% (or 1.31 mg/cc). The cross-contamination artifacts are significantly minimized or absent with the proposed algorithm. Conclusion. The proposed algorithm can significantly reduce image noise present in basis material density images from dual-energy CT imaging, with minimized cross-contaminations compared to the ACNR algorithm. |
format | Online Article Text |
id | pubmed-3703721 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-37037212013-07-16 Simultaneous Reduction in Noise and Cross-Contamination Artifacts for Dual-Energy X-Ray CT Li, Baojun Li, Baohong Luo, Jack Tang, Peng Mao, Jiandong Wu, Xiaoye Biomed Res Int Research Article Purpose. Dual-energy CT imaging tends to suffer from much lower signal-to-noise ratio than single-energy CT. In this paper, we propose an improved anticorrelated noise reduction (ACNR) method without causing cross-contamination artifacts. Methods. The proposed algorithm diffuses both basis material density images (e.g., water and iodine) at the same time using a novel correlated diffusion algorithm. The algorithm has been compared to the original ACNR algorithm in a contrast-enhanced, IRB-approved patient study. Material density accuracy and noise reduction are quantitatively evaluated by the percent density error and the percent noise reduction. Results. Both algorithms have significantly reduced the noises of basis material density images in all cases. The average percent noise reduction is 69.3% and 66.5% with the ACNR algorithm and the proposed algorithm, respectively. However, the ACNR algorithm alters the original material density by an average of 13% (or 2.18 mg/cc) with a maximum of 58.7% (or 8.97 mg/cc) in this study. This is evident in the water density images as massive cross-contaminations are seen in all five clinical cases. On the contrary, the proposed algorithm only changes the mean density by 2.4% (or 0.69 mg/cc) with a maximum of 7.6% (or 1.31 mg/cc). The cross-contamination artifacts are significantly minimized or absent with the proposed algorithm. Conclusion. The proposed algorithm can significantly reduce image noise present in basis material density images from dual-energy CT imaging, with minimized cross-contaminations compared to the ACNR algorithm. Hindawi Publishing Corporation 2013 2013-06-19 /pmc/articles/PMC3703721/ /pubmed/23862145 http://dx.doi.org/10.1155/2013/417278 Text en Copyright © 2013 Baojun Li et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Li, Baojun Li, Baohong Luo, Jack Tang, Peng Mao, Jiandong Wu, Xiaoye Simultaneous Reduction in Noise and Cross-Contamination Artifacts for Dual-Energy X-Ray CT |
title | Simultaneous Reduction in Noise and Cross-Contamination Artifacts for Dual-Energy X-Ray CT |
title_full | Simultaneous Reduction in Noise and Cross-Contamination Artifacts for Dual-Energy X-Ray CT |
title_fullStr | Simultaneous Reduction in Noise and Cross-Contamination Artifacts for Dual-Energy X-Ray CT |
title_full_unstemmed | Simultaneous Reduction in Noise and Cross-Contamination Artifacts for Dual-Energy X-Ray CT |
title_short | Simultaneous Reduction in Noise and Cross-Contamination Artifacts for Dual-Energy X-Ray CT |
title_sort | simultaneous reduction in noise and cross-contamination artifacts for dual-energy x-ray ct |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703721/ https://www.ncbi.nlm.nih.gov/pubmed/23862145 http://dx.doi.org/10.1155/2013/417278 |
work_keys_str_mv | AT libaojun simultaneousreductioninnoiseandcrosscontaminationartifactsfordualenergyxrayct AT libaohong simultaneousreductioninnoiseandcrosscontaminationartifactsfordualenergyxrayct AT luojack simultaneousreductioninnoiseandcrosscontaminationartifactsfordualenergyxrayct AT tangpeng simultaneousreductioninnoiseandcrosscontaminationartifactsfordualenergyxrayct AT maojiandong simultaneousreductioninnoiseandcrosscontaminationartifactsfordualenergyxrayct AT wuxiaoye simultaneousreductioninnoiseandcrosscontaminationartifactsfordualenergyxrayct |