Cargando…

Constructing Benchmark Databases and Protocols for Medical Image Analysis: Diabetic Retinopathy

We address the performance evaluation practices for developing medical image analysis methods, in particular, how to establish and share databases of medical images with verified ground truth and solid evaluation protocols. Such databases support the development of better algorithms, execution of pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Kauppi, Tomi, Kämäräinen, Joni-Kristian, Lensu, Lasse, Kalesnykiene, Valentina, Sorri, Iiris, Uusitalo, Hannu, Kälviäinen, Heikki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703800/
https://www.ncbi.nlm.nih.gov/pubmed/23956787
http://dx.doi.org/10.1155/2013/368514
_version_ 1782275945328017408
author Kauppi, Tomi
Kämäräinen, Joni-Kristian
Lensu, Lasse
Kalesnykiene, Valentina
Sorri, Iiris
Uusitalo, Hannu
Kälviäinen, Heikki
author_facet Kauppi, Tomi
Kämäräinen, Joni-Kristian
Lensu, Lasse
Kalesnykiene, Valentina
Sorri, Iiris
Uusitalo, Hannu
Kälviäinen, Heikki
author_sort Kauppi, Tomi
collection PubMed
description We address the performance evaluation practices for developing medical image analysis methods, in particular, how to establish and share databases of medical images with verified ground truth and solid evaluation protocols. Such databases support the development of better algorithms, execution of profound method comparisons, and, consequently, technology transfer from research laboratories to clinical practice. For this purpose, we propose a framework consisting of reusable methods and tools for the laborious task of constructing a benchmark database. We provide a software tool for medical image annotation helping to collect class label, spatial span, and expert's confidence on lesions and a method to appropriately combine the manual segmentations from multiple experts. The tool and all necessary functionality for method evaluation are provided as public software packages. As a case study, we utilized the framework and tools to establish the DiaRetDB1 V2.1 database for benchmarking diabetic retinopathy detection algorithms. The database contains a set of retinal images, ground truth based on information from multiple experts, and a baseline algorithm for the detection of retinopathy lesions.
format Online
Article
Text
id pubmed-3703800
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-37038002013-08-16 Constructing Benchmark Databases and Protocols for Medical Image Analysis: Diabetic Retinopathy Kauppi, Tomi Kämäräinen, Joni-Kristian Lensu, Lasse Kalesnykiene, Valentina Sorri, Iiris Uusitalo, Hannu Kälviäinen, Heikki Comput Math Methods Med Research Article We address the performance evaluation practices for developing medical image analysis methods, in particular, how to establish and share databases of medical images with verified ground truth and solid evaluation protocols. Such databases support the development of better algorithms, execution of profound method comparisons, and, consequently, technology transfer from research laboratories to clinical practice. For this purpose, we propose a framework consisting of reusable methods and tools for the laborious task of constructing a benchmark database. We provide a software tool for medical image annotation helping to collect class label, spatial span, and expert's confidence on lesions and a method to appropriately combine the manual segmentations from multiple experts. The tool and all necessary functionality for method evaluation are provided as public software packages. As a case study, we utilized the framework and tools to establish the DiaRetDB1 V2.1 database for benchmarking diabetic retinopathy detection algorithms. The database contains a set of retinal images, ground truth based on information from multiple experts, and a baseline algorithm for the detection of retinopathy lesions. Hindawi Publishing Corporation 2013 2013-06-19 /pmc/articles/PMC3703800/ /pubmed/23956787 http://dx.doi.org/10.1155/2013/368514 Text en Copyright © 2013 Tomi Kauppi et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Kauppi, Tomi
Kämäräinen, Joni-Kristian
Lensu, Lasse
Kalesnykiene, Valentina
Sorri, Iiris
Uusitalo, Hannu
Kälviäinen, Heikki
Constructing Benchmark Databases and Protocols for Medical Image Analysis: Diabetic Retinopathy
title Constructing Benchmark Databases and Protocols for Medical Image Analysis: Diabetic Retinopathy
title_full Constructing Benchmark Databases and Protocols for Medical Image Analysis: Diabetic Retinopathy
title_fullStr Constructing Benchmark Databases and Protocols for Medical Image Analysis: Diabetic Retinopathy
title_full_unstemmed Constructing Benchmark Databases and Protocols for Medical Image Analysis: Diabetic Retinopathy
title_short Constructing Benchmark Databases and Protocols for Medical Image Analysis: Diabetic Retinopathy
title_sort constructing benchmark databases and protocols for medical image analysis: diabetic retinopathy
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703800/
https://www.ncbi.nlm.nih.gov/pubmed/23956787
http://dx.doi.org/10.1155/2013/368514
work_keys_str_mv AT kauppitomi constructingbenchmarkdatabasesandprotocolsformedicalimageanalysisdiabeticretinopathy
AT kamarainenjonikristian constructingbenchmarkdatabasesandprotocolsformedicalimageanalysisdiabeticretinopathy
AT lensulasse constructingbenchmarkdatabasesandprotocolsformedicalimageanalysisdiabeticretinopathy
AT kalesnykienevalentina constructingbenchmarkdatabasesandprotocolsformedicalimageanalysisdiabeticretinopathy
AT sorriiiris constructingbenchmarkdatabasesandprotocolsformedicalimageanalysisdiabeticretinopathy
AT uusitalohannu constructingbenchmarkdatabasesandprotocolsformedicalimageanalysisdiabeticretinopathy
AT kalviainenheikki constructingbenchmarkdatabasesandprotocolsformedicalimageanalysisdiabeticretinopathy