Cargando…
Sublinear Binocular Integration Preserves Orientation Selectivity in Mouse Visual Cortex
Inputs from the two eyes are first combined in simple cells in the primary visual cortex. Consequently, visual cortical neurons need to have the flexibility to encode visual features under both monocular and binocular situations. Here we show that binocular orientation selectivity of mouse simple ce...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703862/ https://www.ncbi.nlm.nih.gov/pubmed/23800837 http://dx.doi.org/10.1038/ncomms3088 |
_version_ | 1782275950521614336 |
---|---|
author | Zhao, Xinyu Liu, Mingna Cang, Jianhua |
author_facet | Zhao, Xinyu Liu, Mingna Cang, Jianhua |
author_sort | Zhao, Xinyu |
collection | PubMed |
description | Inputs from the two eyes are first combined in simple cells in the primary visual cortex. Consequently, visual cortical neurons need to have the flexibility to encode visual features under both monocular and binocular situations. Here we show that binocular orientation selectivity of mouse simple cells is nearly identical to monocular orientation selectivity in both anesthetized and awake conditions. In vivo whole-cell recordings reveal that the binocular integration of membrane potential responses is sublinear. The sublinear integration keeps binocularly-evoked depolarizations below threshold at non-preferred orientations, thus preserving orientation selectivity. Computational simulations based on measured synaptic conductances indicate that inhibition promotes sublinear binocular integration, which are further confirmed by experiments using genetic and pharmacological manipulations. Our findings therefore reveal a cellular mechanism for how visual system can switch effortlessly between monocular and binocular conditions. The same mechanism may apply to other sensory systems that also integrate multiple channels of inputs. |
format | Online Article Text |
id | pubmed-3703862 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
record_format | MEDLINE/PubMed |
spelling | pubmed-37038622013-12-26 Sublinear Binocular Integration Preserves Orientation Selectivity in Mouse Visual Cortex Zhao, Xinyu Liu, Mingna Cang, Jianhua Nat Commun Article Inputs from the two eyes are first combined in simple cells in the primary visual cortex. Consequently, visual cortical neurons need to have the flexibility to encode visual features under both monocular and binocular situations. Here we show that binocular orientation selectivity of mouse simple cells is nearly identical to monocular orientation selectivity in both anesthetized and awake conditions. In vivo whole-cell recordings reveal that the binocular integration of membrane potential responses is sublinear. The sublinear integration keeps binocularly-evoked depolarizations below threshold at non-preferred orientations, thus preserving orientation selectivity. Computational simulations based on measured synaptic conductances indicate that inhibition promotes sublinear binocular integration, which are further confirmed by experiments using genetic and pharmacological manipulations. Our findings therefore reveal a cellular mechanism for how visual system can switch effortlessly between monocular and binocular conditions. The same mechanism may apply to other sensory systems that also integrate multiple channels of inputs. 2013 /pmc/articles/PMC3703862/ /pubmed/23800837 http://dx.doi.org/10.1038/ncomms3088 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Zhao, Xinyu Liu, Mingna Cang, Jianhua Sublinear Binocular Integration Preserves Orientation Selectivity in Mouse Visual Cortex |
title | Sublinear Binocular Integration Preserves Orientation Selectivity in Mouse Visual Cortex |
title_full | Sublinear Binocular Integration Preserves Orientation Selectivity in Mouse Visual Cortex |
title_fullStr | Sublinear Binocular Integration Preserves Orientation Selectivity in Mouse Visual Cortex |
title_full_unstemmed | Sublinear Binocular Integration Preserves Orientation Selectivity in Mouse Visual Cortex |
title_short | Sublinear Binocular Integration Preserves Orientation Selectivity in Mouse Visual Cortex |
title_sort | sublinear binocular integration preserves orientation selectivity in mouse visual cortex |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703862/ https://www.ncbi.nlm.nih.gov/pubmed/23800837 http://dx.doi.org/10.1038/ncomms3088 |
work_keys_str_mv | AT zhaoxinyu sublinearbinocularintegrationpreservesorientationselectivityinmousevisualcortex AT liumingna sublinearbinocularintegrationpreservesorientationselectivityinmousevisualcortex AT cangjianhua sublinearbinocularintegrationpreservesorientationselectivityinmousevisualcortex |