Cargando…
Multilevel Tunnelling Systems and Fractal Clustering in the Low-Temperature Mixed Alkali-Silicate Glasses
The thermal and dielectric anomalies of window-type glasses at low temperatures (T < 1 K) are rather successfully explained by the two-level systems (2LS) standard tunneling model (STM). However, the magnetic effects discovered in the multisilicate glasses in recent times, magnetic effects in the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703910/ https://www.ncbi.nlm.nih.gov/pubmed/23861652 http://dx.doi.org/10.1155/2013/263742 |
_version_ | 1782275956989231104 |
---|---|
author | Jug, Giancarlo Paliienko, Maksym |
author_facet | Jug, Giancarlo Paliienko, Maksym |
author_sort | Jug, Giancarlo |
collection | PubMed |
description | The thermal and dielectric anomalies of window-type glasses at low temperatures (T < 1 K) are rather successfully explained by the two-level systems (2LS) standard tunneling model (STM). However, the magnetic effects discovered in the multisilicate glasses in recent times, magnetic effects in the organic glasses, and also some older data from mixed (SiO(2))(1−x)(K(2)O)(x) and (SiO(2))(1−x)(Na(2)O)(x) glasses indicate the need for a suitable extension of the 2LS-STM. We show that—not only for the magnetic effects, but also for the mixed glasses in the absence of a field—the right extension of the 2LS-STM is provided by the (anomalous) multilevel tunnelling systems (ATS) proposed by one of us for multicomponent amorphous solids. Though a secondary type of TS, different from the standard 2LS, was invoked long ago already, we clarify their physical origin and mathematical description and show that their contribution considerably improves the agreement with the experimental data. In spite of dealing with low-temperature properties, our work impinges on the structure and statistical physics of glasses at all temperatures. |
format | Online Article Text |
id | pubmed-3703910 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-37039102013-07-16 Multilevel Tunnelling Systems and Fractal Clustering in the Low-Temperature Mixed Alkali-Silicate Glasses Jug, Giancarlo Paliienko, Maksym ScientificWorldJournal Research Article The thermal and dielectric anomalies of window-type glasses at low temperatures (T < 1 K) are rather successfully explained by the two-level systems (2LS) standard tunneling model (STM). However, the magnetic effects discovered in the multisilicate glasses in recent times, magnetic effects in the organic glasses, and also some older data from mixed (SiO(2))(1−x)(K(2)O)(x) and (SiO(2))(1−x)(Na(2)O)(x) glasses indicate the need for a suitable extension of the 2LS-STM. We show that—not only for the magnetic effects, but also for the mixed glasses in the absence of a field—the right extension of the 2LS-STM is provided by the (anomalous) multilevel tunnelling systems (ATS) proposed by one of us for multicomponent amorphous solids. Though a secondary type of TS, different from the standard 2LS, was invoked long ago already, we clarify their physical origin and mathematical description and show that their contribution considerably improves the agreement with the experimental data. In spite of dealing with low-temperature properties, our work impinges on the structure and statistical physics of glasses at all temperatures. Hindawi Publishing Corporation 2013-06-19 /pmc/articles/PMC3703910/ /pubmed/23861652 http://dx.doi.org/10.1155/2013/263742 Text en Copyright © 2013 G. Jug and M. Paliienko. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Jug, Giancarlo Paliienko, Maksym Multilevel Tunnelling Systems and Fractal Clustering in the Low-Temperature Mixed Alkali-Silicate Glasses |
title | Multilevel Tunnelling Systems and Fractal Clustering in the Low-Temperature Mixed Alkali-Silicate Glasses |
title_full | Multilevel Tunnelling Systems and Fractal Clustering in the Low-Temperature Mixed Alkali-Silicate Glasses |
title_fullStr | Multilevel Tunnelling Systems and Fractal Clustering in the Low-Temperature Mixed Alkali-Silicate Glasses |
title_full_unstemmed | Multilevel Tunnelling Systems and Fractal Clustering in the Low-Temperature Mixed Alkali-Silicate Glasses |
title_short | Multilevel Tunnelling Systems and Fractal Clustering in the Low-Temperature Mixed Alkali-Silicate Glasses |
title_sort | multilevel tunnelling systems and fractal clustering in the low-temperature mixed alkali-silicate glasses |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703910/ https://www.ncbi.nlm.nih.gov/pubmed/23861652 http://dx.doi.org/10.1155/2013/263742 |
work_keys_str_mv | AT juggiancarlo multileveltunnellingsystemsandfractalclusteringinthelowtemperaturemixedalkalisilicateglasses AT paliienkomaksym multileveltunnellingsystemsandfractalclusteringinthelowtemperaturemixedalkalisilicateglasses |