Cargando…
At the limits of a successful body plan – 3D microanatomy, histology and evolution of Helminthope (Mollusca: Heterobranchia: Rhodopemorpha), the most worm-like gastropod
BACKGROUND: Gastropods are among the most diverse animal clades, and have successfully colonized special habitats such as the marine sand interstitial. Specialized meiofaunal snails and slugs are tiny and worm-shaped. They combine regressive features – argued to be due to progenetic tendencies – wit...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704743/ https://www.ncbi.nlm.nih.gov/pubmed/23809165 http://dx.doi.org/10.1186/1742-9994-10-37 |
_version_ | 1782476327477051392 |
---|---|
author | Brenzinger, Bastian Haszprunar, Gerhard Schrödl, Michael |
author_facet | Brenzinger, Bastian Haszprunar, Gerhard Schrödl, Michael |
author_sort | Brenzinger, Bastian |
collection | PubMed |
description | BACKGROUND: Gastropods are among the most diverse animal clades, and have successfully colonized special habitats such as the marine sand interstitial. Specialized meiofaunal snails and slugs are tiny and worm-shaped. They combine regressive features – argued to be due to progenetic tendencies – with convergent adaptations. Microscopic size and concerted convergences make morphological examination non-trivial and hamper phylogenetic reconstructions. The enigmatic turbellarian-like Rhodopemorpha are a small group that has puzzled systematists for over a century. A preliminary molecular framework places the group far closer to the root of Heterobranchia – one of the major gastropod groups – than previously suggested. The poorly known meiofaunal Helminthope psammobionta Salvini-Plawen, 1991 from Bermuda is the most worm-shaped free-living gastropod and shows apparently aberrant aspects of anatomy. Its study may give important clues to understand the evolution of rhodopemorphs among basal heterobranchs versus their previously thought origin among ‘higher’ euthyneuran taxa. RESULTS: We describe the 3D-microanatomy of H. psammobionta using three-dimensional digital reconstruction based on serial semithin histological sections. The new dataset expands upon the original description and corrects several aspects. Helminthope shows a set of typical adaptations and regressive characters present in other mesopsammic slugs (called ‘meiofaunal syndrome’ herein). The taxonomically important presence of five separate visceral loop ganglia is confirmed, but considerable further detail of the complex nervous system are corrected and revealed. The digestive and reproductive systems are simple and modified to the thread-like morphology of the animal; the anus is far posterior. There is no heart; the kidney resembles a protonephridium. Data on all organ systems are compiled and compared to Rhodope. CONCLUSIONS: Helminthope is related to Rhodope sharing unique apomorphies. We argue that the peculiar kidney, configuration of the visceral loop and simplicity or lack of other organs in Rhodopemorpha are results of progenesis. The posterior shift of the anus in Helminthope is interpreted as a peramorphy, i.e. hypertrophy of body length early in ontogeny. Our review of morphological and molecular evidence is consistent with an origin of Rhodopemorpha slugs among shelled ‘lower Heterobranchia’. Previously thought shared ‘diagnostic’ features such as five visceral ganglia are either plesiomorphic or convergent, while euthyneury and a double-rooted cerebral nerve likely evolved independently in Rhodopemorpha and Euthyneura. |
format | Online Article Text |
id | pubmed-3704743 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-37047432013-07-10 At the limits of a successful body plan – 3D microanatomy, histology and evolution of Helminthope (Mollusca: Heterobranchia: Rhodopemorpha), the most worm-like gastropod Brenzinger, Bastian Haszprunar, Gerhard Schrödl, Michael Front Zool Research BACKGROUND: Gastropods are among the most diverse animal clades, and have successfully colonized special habitats such as the marine sand interstitial. Specialized meiofaunal snails and slugs are tiny and worm-shaped. They combine regressive features – argued to be due to progenetic tendencies – with convergent adaptations. Microscopic size and concerted convergences make morphological examination non-trivial and hamper phylogenetic reconstructions. The enigmatic turbellarian-like Rhodopemorpha are a small group that has puzzled systematists for over a century. A preliminary molecular framework places the group far closer to the root of Heterobranchia – one of the major gastropod groups – than previously suggested. The poorly known meiofaunal Helminthope psammobionta Salvini-Plawen, 1991 from Bermuda is the most worm-shaped free-living gastropod and shows apparently aberrant aspects of anatomy. Its study may give important clues to understand the evolution of rhodopemorphs among basal heterobranchs versus their previously thought origin among ‘higher’ euthyneuran taxa. RESULTS: We describe the 3D-microanatomy of H. psammobionta using three-dimensional digital reconstruction based on serial semithin histological sections. The new dataset expands upon the original description and corrects several aspects. Helminthope shows a set of typical adaptations and regressive characters present in other mesopsammic slugs (called ‘meiofaunal syndrome’ herein). The taxonomically important presence of five separate visceral loop ganglia is confirmed, but considerable further detail of the complex nervous system are corrected and revealed. The digestive and reproductive systems are simple and modified to the thread-like morphology of the animal; the anus is far posterior. There is no heart; the kidney resembles a protonephridium. Data on all organ systems are compiled and compared to Rhodope. CONCLUSIONS: Helminthope is related to Rhodope sharing unique apomorphies. We argue that the peculiar kidney, configuration of the visceral loop and simplicity or lack of other organs in Rhodopemorpha are results of progenesis. The posterior shift of the anus in Helminthope is interpreted as a peramorphy, i.e. hypertrophy of body length early in ontogeny. Our review of morphological and molecular evidence is consistent with an origin of Rhodopemorpha slugs among shelled ‘lower Heterobranchia’. Previously thought shared ‘diagnostic’ features such as five visceral ganglia are either plesiomorphic or convergent, while euthyneury and a double-rooted cerebral nerve likely evolved independently in Rhodopemorpha and Euthyneura. BioMed Central 2013-06-28 /pmc/articles/PMC3704743/ /pubmed/23809165 http://dx.doi.org/10.1186/1742-9994-10-37 Text en Copyright © 2013 Brenzinger et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Brenzinger, Bastian Haszprunar, Gerhard Schrödl, Michael At the limits of a successful body plan – 3D microanatomy, histology and evolution of Helminthope (Mollusca: Heterobranchia: Rhodopemorpha), the most worm-like gastropod |
title | At the limits of a successful body plan – 3D microanatomy, histology and evolution of Helminthope (Mollusca: Heterobranchia: Rhodopemorpha), the most worm-like gastropod |
title_full | At the limits of a successful body plan – 3D microanatomy, histology and evolution of Helminthope (Mollusca: Heterobranchia: Rhodopemorpha), the most worm-like gastropod |
title_fullStr | At the limits of a successful body plan – 3D microanatomy, histology and evolution of Helminthope (Mollusca: Heterobranchia: Rhodopemorpha), the most worm-like gastropod |
title_full_unstemmed | At the limits of a successful body plan – 3D microanatomy, histology and evolution of Helminthope (Mollusca: Heterobranchia: Rhodopemorpha), the most worm-like gastropod |
title_short | At the limits of a successful body plan – 3D microanatomy, histology and evolution of Helminthope (Mollusca: Heterobranchia: Rhodopemorpha), the most worm-like gastropod |
title_sort | at the limits of a successful body plan – 3d microanatomy, histology and evolution of helminthope (mollusca: heterobranchia: rhodopemorpha), the most worm-like gastropod |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704743/ https://www.ncbi.nlm.nih.gov/pubmed/23809165 http://dx.doi.org/10.1186/1742-9994-10-37 |
work_keys_str_mv | AT brenzingerbastian atthelimitsofasuccessfulbodyplan3dmicroanatomyhistologyandevolutionofhelminthopemolluscaheterobranchiarhodopemorphathemostwormlikegastropod AT haszprunargerhard atthelimitsofasuccessfulbodyplan3dmicroanatomyhistologyandevolutionofhelminthopemolluscaheterobranchiarhodopemorphathemostwormlikegastropod AT schrodlmichael atthelimitsofasuccessfulbodyplan3dmicroanatomyhistologyandevolutionofhelminthopemolluscaheterobranchiarhodopemorphathemostwormlikegastropod |