Cargando…

6″-Debromohamacanthin A, a Bis (Indole) Alkaloid, Inhibits Angiogenesis by Targeting the VEGFR2-Mediated PI3K/AKT/mTOR Signaling Pathways

Hamacanthins, bis (indole) alkaloids, are found in a few marine sponges, including Spongosorites sp. Hamacanthins have been shown to possess cytotoxic, antibacterial and antifungal activities. However, the precise mechanism for the biological activities of hamacanthins has not yet been elucidated. I...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Gi Dae, Cheong, Oug Jae, Bae, Song Yi, Shin, Jongheon, Lee, Sang Kook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705390/
https://www.ncbi.nlm.nih.gov/pubmed/23549281
http://dx.doi.org/10.3390/md11041087
Descripción
Sumario:Hamacanthins, bis (indole) alkaloids, are found in a few marine sponges, including Spongosorites sp. Hamacanthins have been shown to possess cytotoxic, antibacterial and antifungal activities. However, the precise mechanism for the biological activities of hamacanthins has not yet been elucidated. In the present study, the anti-angiogenic effects of 6″-debromohamacanthin A (DBHA), an active component of isolated hamacanthins, were evaluated in cultured human umbilical vascular endothelial cells (HUVEC) and endothelial-like cells differentiated from mouse embryonic stem (mES) cells. DBHA significantly inhibited vascular endothelial growth factor (VEGF)-induced cell proliferation, migration and tube formation in the HUVEC. DBHA also suppressed the capillary-like structure formation and the expression of platelet endothelial cell adhesion molecule (PECAM), an endothelial biomarker, in mES cell-derived endothelial-like cells. To further understand the precise molecular mechanism of action, VEGF-mediated signaling pathways were analyzed in HUVEC cells and mES cell-derived endothelial-like cells. DBHA suppressed the VEGF-induced expression of MAPKs (p38, ERK and SAPK/JNK) and the PI3K/AKT/mTOR signaling pathway. In addition, DBHA inhibited microvessel sprouting in mES/EB-derived embryoid bodies. In an ex vivo model, DBHA also suppressed the microvessel sprouting of mouse aortic rings. The findings suggest for the first time that DBHA inhibits angiogenesis by targeting the vascular endothelial growth factor receptor 2 (VEGFR2)-mediated PI3K/AKT/mTOR signaling pathway in endothelial cells.