Cargando…
Distributed Principal Component Analysis for Wireless Sensor Networks
The Principal Component Analysis (PCA) is a data dimensionality reduction tech-nique well-suited for processing data from sensor networks. It can be applied to tasks like compression, event detection, and event recognition. This technique is based on a linear trans-form where the sensor measurements...
Autores principales: | Le Borgne, Yann-Aël, Raybaud, Sylvain, Bontempi, Gianluca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705474/ https://www.ncbi.nlm.nih.gov/pubmed/27873788 http://dx.doi.org/10.3390/s8084821 |
Ejemplares similares
-
The role of diversity and ensemble learning in credit card fraud detection
por: Paldino, Gian Marco, et al.
Publicado: (2022) -
An Efficient Data Compression Model Based on Spatial Clustering and Principal Component Analysis in Wireless Sensor Networks
por: Yin, Yihang, et al.
Publicado: (2015) -
Missing and Corrupted Data Recovery in Wireless Sensor Networks Based on Weighted Robust Principal Component Analysis
por: He, Jingfei, et al.
Publicado: (2022) -
Principal component analysis networks and algorithms
por: Kong, Xiangyu, et al.
Publicado: (2017) -
Deployment of Distributed Applications in Wireless Sensor Networks
por: Pilloni, Virginia, et al.
Publicado: (2011)