Cargando…
Ship Detection in SAR Image Based on the Alpha-stable Distribution
This paper describes an improved Constant False Alarm Rate (CFAR) ship detection algorithm in spaceborne synthetic aperture radar (SAR) image based on Alpha-stable distribution model. Typically, the CFAR algorithm uses the Gaussian distribution model to describe statistical characteristics of a SAR...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705480/ https://www.ncbi.nlm.nih.gov/pubmed/27873794 http://dx.doi.org/10.3390/s8084948 |
_version_ | 1782476446066802688 |
---|---|
author | Wang, Changcheng Liao, Mingsheng Li, Xiaofeng |
author_facet | Wang, Changcheng Liao, Mingsheng Li, Xiaofeng |
author_sort | Wang, Changcheng |
collection | PubMed |
description | This paper describes an improved Constant False Alarm Rate (CFAR) ship detection algorithm in spaceborne synthetic aperture radar (SAR) image based on Alpha-stable distribution model. Typically, the CFAR algorithm uses the Gaussian distribution model to describe statistical characteristics of a SAR image background clutter. However, the Gaussian distribution is only valid for multilook SAR images when several radar looks are averaged. As sea clutter in SAR images shows spiky or heavy-tailed characteristics, the Gaussian distribution often fails to describe background sea clutter. In this study, we replace the Gaussian distribution with the Alpha-stable distribution, which is widely used in impulsive or spiky signal processing, to describe the background sea clutter in SAR images. In our proposed algorithm, an initial step for detecting possible ship targets is employed. Then, similar to the typical two-parameter CFAR algorithm, a local process is applied to the pixel identified as possible target. A RADARSAT-1 image is used to validate this Alpha-stable distribution based algorithm. Meanwhile, known ship location data during the time of RADARSAT-1 SAR image acquisition is used to validate ship detection results. Validation results show improvements of the new CFAR algorithm based on the Alpha-stable distribution over the CFAR algorithm based on the Gaussian distribution. |
format | Online Article Text |
id | pubmed-3705480 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-37054802013-07-09 Ship Detection in SAR Image Based on the Alpha-stable Distribution Wang, Changcheng Liao, Mingsheng Li, Xiaofeng Sensors (Basel) Article This paper describes an improved Constant False Alarm Rate (CFAR) ship detection algorithm in spaceborne synthetic aperture radar (SAR) image based on Alpha-stable distribution model. Typically, the CFAR algorithm uses the Gaussian distribution model to describe statistical characteristics of a SAR image background clutter. However, the Gaussian distribution is only valid for multilook SAR images when several radar looks are averaged. As sea clutter in SAR images shows spiky or heavy-tailed characteristics, the Gaussian distribution often fails to describe background sea clutter. In this study, we replace the Gaussian distribution with the Alpha-stable distribution, which is widely used in impulsive or spiky signal processing, to describe the background sea clutter in SAR images. In our proposed algorithm, an initial step for detecting possible ship targets is employed. Then, similar to the typical two-parameter CFAR algorithm, a local process is applied to the pixel identified as possible target. A RADARSAT-1 image is used to validate this Alpha-stable distribution based algorithm. Meanwhile, known ship location data during the time of RADARSAT-1 SAR image acquisition is used to validate ship detection results. Validation results show improvements of the new CFAR algorithm based on the Alpha-stable distribution over the CFAR algorithm based on the Gaussian distribution. Molecular Diversity Preservation International (MDPI) 2008-08-22 /pmc/articles/PMC3705480/ /pubmed/27873794 http://dx.doi.org/10.3390/s8084948 Text en © 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Wang, Changcheng Liao, Mingsheng Li, Xiaofeng Ship Detection in SAR Image Based on the Alpha-stable Distribution |
title | Ship Detection in SAR Image Based on the Alpha-stable Distribution |
title_full | Ship Detection in SAR Image Based on the Alpha-stable Distribution |
title_fullStr | Ship Detection in SAR Image Based on the Alpha-stable Distribution |
title_full_unstemmed | Ship Detection in SAR Image Based on the Alpha-stable Distribution |
title_short | Ship Detection in SAR Image Based on the Alpha-stable Distribution |
title_sort | ship detection in sar image based on the alpha-stable distribution |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705480/ https://www.ncbi.nlm.nih.gov/pubmed/27873794 http://dx.doi.org/10.3390/s8084948 |
work_keys_str_mv | AT wangchangcheng shipdetectioninsarimagebasedonthealphastabledistribution AT liaomingsheng shipdetectioninsarimagebasedonthealphastabledistribution AT lixiaofeng shipdetectioninsarimagebasedonthealphastabledistribution |