Cargando…
SVM based model generation for binding site prediction on helix turn helix motif type of transcription factors in eukaryotes
Support vector machine is a class of machine learning algorithms which uses a set of related supervised learning methods for classification and regression. Nowadays this method is vividly applied to many detection problems related with secondary structure, tumor cell and binding residue prediction....
Autores principales: | Mukherjee, Koel, Abhipriya, Vidyarthi, Ambarish Saran, Pandey, Dev Mani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705624/ https://www.ncbi.nlm.nih.gov/pubmed/23861565 http://dx.doi.org/10.6026/97320630009500 |
Ejemplares similares
-
Molecular Dynamics Simulation of Rap1 Myb-type domain in Saccharomyces cerevisiae
por: Mukherjee, Koel, et al.
Publicado: (2012) -
Detecting DNA-binding helix–turn–helix structural motifs using sequence and structure information
por: Pellegrini-Calace, Marialuisa, et al.
Publicado: (2005) -
An Unusual Helix Turn Helix Motif in the Catalytic Core of HIV-1 Integrase Binds Viral DNA and LEDGF
por: Merad, Hayate, et al.
Publicado: (2009) -
Local combinational variables: an approach used in DNA-binding helix-turn-helix motif prediction with sequence information
por: Xiong, Wenwei, et al.
Publicado: (2009) -
Functional conservation and divergence of the helix‐turn‐helix motif of E2 ubiquitin‐conjugating enzymes
por: Welsh, Kaeli A, et al.
Publicado: (2021)