Cargando…
Learned Shrinkage Approach for Low-Dose Reconstruction in Computed Tomography
We propose a direct nonlinear reconstruction algorithm for Computed Tomography (CT), designed to handle low-dose measurements. It involves the filtered back-projection and adaptive nonlinear filtering in both the projection and the image domains. The filter is an extension of the learned shrinkage m...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705757/ https://www.ncbi.nlm.nih.gov/pubmed/23864851 http://dx.doi.org/10.1155/2013/609274 |
Sumario: | We propose a direct nonlinear reconstruction algorithm for Computed Tomography (CT), designed to handle low-dose measurements. It involves the filtered back-projection and adaptive nonlinear filtering in both the projection and the image domains. The filter is an extension of the learned shrinkage method by Hel-Or and Shaked to the case of indirect observations. The shrinkage functions are learned using a training set of reference CT images. The optimization is performed with respect to an error functional in the image domain that combines the mean square error with a gradient-based penalty, promoting image sharpness. Our numerical simulations indicate that the proposed algorithm can manage well with noisy measurements, allowing a dose reduction by a factor of 4, while reducing noise and streak artifacts in the FBP reconstruction, comparable to the performance of a statistically based iterative algorithm. |
---|