Cargando…
Predicting complex traits using a diffusion kernel on genetic markers with an application to dairy cattle and wheat data
BACKGROUND: Arguably, genotypes and phenotypes may be linked in functional forms that are not well addressed by the linear additive models that are standard in quantitative genetics. Therefore, developing statistical learning models for predicting phenotypic values from all available molecular infor...
Autores principales: | Morota, Gota, Koyama, Masanori, M Rosa, Guilherme J, Weigel, Kent A, Gianola, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706293/ https://www.ncbi.nlm.nih.gov/pubmed/23763755 http://dx.doi.org/10.1186/1297-9686-45-17 |
Ejemplares similares
-
Kernel-based whole-genome prediction of complex traits: a review
por: Morota, Gota, et al.
Publicado: (2014) -
Structural equation modeling for investigating multi-trait genetic architecture of udder health in dairy cattle
por: Pegolo, Sara, et al.
Publicado: (2020) -
Kernel-based variance component estimation and whole-genome prediction of pre-corrected phenotypes and progeny tests for dairy cow health traits
por: Morota, Gota, et al.
Publicado: (2014) -
Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat
por: Gianola, Daniel, et al.
Publicado: (2011) -
Accuracy of Genome-Enabled Prediction in a Dairy Cattle Population using Different Cross-Validation Layouts
por: Pérez-Cabal, M. Angeles, et al.
Publicado: (2012)