Cargando…
Mesothelin Virus-Like Particle Immunization Controls Pancreatic Cancer Growth through CD8(+) T Cell Induction and Reduction in the Frequency of CD4(+)foxp3(+)ICOS(−) Regulatory T Cells
Our previous study has shown that mesothelin (MSLN) is a potential immunotherapeutic target for pancreatic cancer. Here, we further studied the immunogenicity of chimeric murine MSLN-virus-like particles (mMSLN-VLPs), their ability to break tolerance to mMSLN, a self-antigen, and deciphered the mech...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706370/ https://www.ncbi.nlm.nih.gov/pubmed/23874581 http://dx.doi.org/10.1371/journal.pone.0068303 |
Sumario: | Our previous study has shown that mesothelin (MSLN) is a potential immunotherapeutic target for pancreatic cancer. Here, we further studied the immunogenicity of chimeric murine MSLN-virus-like particles (mMSLN-VLPs), their ability to break tolerance to mMSLN, a self-antigen, and deciphered the mechanism of immune responses elicited by mMSLN-VLP immunization using a pancreatic cancer (PC) mouse model. In addition to what we have found with xenogeneic human MSLN-VLP (hMSLN-VLP), mMSLN-VLP immunization was able to break the tolerance to intrinsic MSLN and mount mMSLN-specific, cytotoxic CD8(+) T cells which led to a significant reduction in tumor volume and prolonged survival in an orthotopic PC mouse model. Furthermore, CD4(+)foxp3(+) regulatory T cells (Tregs) were progressively decreased in both spleen and tumor tissues following mMSLN-VLP immunization and this was at least partly due to elevated levels of IL-6 production from activated plasmocytoid dendritic cell (pDC)-like cells following mMSLN-VLP immunization. Moreover, mMSLN-VLP treatment mainly reduced the frequency of the CD4(+)foxp3(+)ICOS(−) Treg subset. However, mMSLN-VLP induced IL-6 production also increased ICOSL expression on pDC-like cells which supported the proliferation of immunosuppressive CD4(+)foxp3(+)ICOS(+) Treg cells. This study reveals that mMSLN-VLP immunization is capable of controlling PC progression by effectively mounting an immune response against mMSLN, a tumor self-antigen, and altering the immunosuppressive tumor microenvironment via activation of pDCs-like cells and reduction in the frequency of CD4(+)foxp3(+)ICOS(−) Treg cells. However, combination therapies will likely need to be used in order to target residual CD4(+)foxp3(+)ICOS(+) Treg cells. |
---|