Cargando…

Identification of nucleotides and amino acids that mediate the interaction between ribosomal protein L30 and the SECIS element

BACKGROUND: Ribosomal protein L30 belongs to the L7Ae family of RNA-binding proteins, which recognize diverse targets. L30 binds to kink-turn motifs in the 28S ribosomal RNA, L30 pre-mRNA, and mature L30 mRNA. L30 has a noncanonical function as a component of the UGA recoding machinery that incorpor...

Descripción completa

Detalles Bibliográficos
Autores principales: Bifano, Abby L, Atassi, Tarik, Ferrara, Tracey, Driscoll, Donna M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706390/
https://www.ncbi.nlm.nih.gov/pubmed/23777426
http://dx.doi.org/10.1186/1471-2199-14-12
_version_ 1782476550907625472
author Bifano, Abby L
Atassi, Tarik
Ferrara, Tracey
Driscoll, Donna M
author_facet Bifano, Abby L
Atassi, Tarik
Ferrara, Tracey
Driscoll, Donna M
author_sort Bifano, Abby L
collection PubMed
description BACKGROUND: Ribosomal protein L30 belongs to the L7Ae family of RNA-binding proteins, which recognize diverse targets. L30 binds to kink-turn motifs in the 28S ribosomal RNA, L30 pre-mRNA, and mature L30 mRNA. L30 has a noncanonical function as a component of the UGA recoding machinery that incorporates selenocysteine (Sec) into selenoproteins during translation. L30 binds to a putative kink-turn motif in the Sec Insertion Sequence (SECIS) element in the 3’ UTR of mammalian selenoprotein mRNAs. The SECIS also interacts with SECIS-binding protein 2 (SBP2), an essential factor for Sec incorporation. Previous studies showed that L30 and SBP2 compete for binding to the SECIS in vitro. The SBP2:SECIS interaction has been characterized but much less is known about how L30 recognizes the SECIS. RESULTS: Here we use enzymatic RNA footprinting to define the L30 binding site on the SECIS. Like SBP2, L30 protects nucleotides in the 5’ side of the internal loop, the 5’ side of the lower helix, and the SECIS core, including the GA tandem base pairs that are predicted to form a kink-turn. However, L30 has additional determinants for binding as it also protects nucleotides in the 3’ side of the internal loop, which are not protected by SBP2. In support of the competitive binding model, we found that purified L30 repressed UGA recoding in an in vitro translation system, and that this inhibition was rescued by SBP2. To define the amino acid requirements for SECIS-binding, site-specific mutations in L30 were generated based on published structural studies of this protein in a complex with its canonical target, the L30 pre-mRNA. We identified point mutations that selectively inhibited binding of L30 to the SECIS, to the L30 pre-mRNA, or both RNAs, suggesting that there are subtle differences in how L30 interacts with the two targets. CONCLUSIONS: This study establishes that L30 and SBP2 bind to overlapping but non-identical sites on the SECIS. The amino acid requirements for the interaction of L30 with the SECIS differ from those that mediate binding to the L30 pre-mRNA. Our results provide insight into how L7Ae family members recognize their cognate RNAs.
format Online
Article
Text
id pubmed-3706390
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-37063902013-07-10 Identification of nucleotides and amino acids that mediate the interaction between ribosomal protein L30 and the SECIS element Bifano, Abby L Atassi, Tarik Ferrara, Tracey Driscoll, Donna M BMC Mol Biol Research Article BACKGROUND: Ribosomal protein L30 belongs to the L7Ae family of RNA-binding proteins, which recognize diverse targets. L30 binds to kink-turn motifs in the 28S ribosomal RNA, L30 pre-mRNA, and mature L30 mRNA. L30 has a noncanonical function as a component of the UGA recoding machinery that incorporates selenocysteine (Sec) into selenoproteins during translation. L30 binds to a putative kink-turn motif in the Sec Insertion Sequence (SECIS) element in the 3’ UTR of mammalian selenoprotein mRNAs. The SECIS also interacts with SECIS-binding protein 2 (SBP2), an essential factor for Sec incorporation. Previous studies showed that L30 and SBP2 compete for binding to the SECIS in vitro. The SBP2:SECIS interaction has been characterized but much less is known about how L30 recognizes the SECIS. RESULTS: Here we use enzymatic RNA footprinting to define the L30 binding site on the SECIS. Like SBP2, L30 protects nucleotides in the 5’ side of the internal loop, the 5’ side of the lower helix, and the SECIS core, including the GA tandem base pairs that are predicted to form a kink-turn. However, L30 has additional determinants for binding as it also protects nucleotides in the 3’ side of the internal loop, which are not protected by SBP2. In support of the competitive binding model, we found that purified L30 repressed UGA recoding in an in vitro translation system, and that this inhibition was rescued by SBP2. To define the amino acid requirements for SECIS-binding, site-specific mutations in L30 were generated based on published structural studies of this protein in a complex with its canonical target, the L30 pre-mRNA. We identified point mutations that selectively inhibited binding of L30 to the SECIS, to the L30 pre-mRNA, or both RNAs, suggesting that there are subtle differences in how L30 interacts with the two targets. CONCLUSIONS: This study establishes that L30 and SBP2 bind to overlapping but non-identical sites on the SECIS. The amino acid requirements for the interaction of L30 with the SECIS differ from those that mediate binding to the L30 pre-mRNA. Our results provide insight into how L7Ae family members recognize their cognate RNAs. BioMed Central 2013-06-19 /pmc/articles/PMC3706390/ /pubmed/23777426 http://dx.doi.org/10.1186/1471-2199-14-12 Text en Copyright © 2013 Bifano et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Bifano, Abby L
Atassi, Tarik
Ferrara, Tracey
Driscoll, Donna M
Identification of nucleotides and amino acids that mediate the interaction between ribosomal protein L30 and the SECIS element
title Identification of nucleotides and amino acids that mediate the interaction between ribosomal protein L30 and the SECIS element
title_full Identification of nucleotides and amino acids that mediate the interaction between ribosomal protein L30 and the SECIS element
title_fullStr Identification of nucleotides and amino acids that mediate the interaction between ribosomal protein L30 and the SECIS element
title_full_unstemmed Identification of nucleotides and amino acids that mediate the interaction between ribosomal protein L30 and the SECIS element
title_short Identification of nucleotides and amino acids that mediate the interaction between ribosomal protein L30 and the SECIS element
title_sort identification of nucleotides and amino acids that mediate the interaction between ribosomal protein l30 and the secis element
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706390/
https://www.ncbi.nlm.nih.gov/pubmed/23777426
http://dx.doi.org/10.1186/1471-2199-14-12
work_keys_str_mv AT bifanoabbyl identificationofnucleotidesandaminoacidsthatmediatetheinteractionbetweenribosomalproteinl30andtheseciselement
AT atassitarik identificationofnucleotidesandaminoacidsthatmediatetheinteractionbetweenribosomalproteinl30andtheseciselement
AT ferraratracey identificationofnucleotidesandaminoacidsthatmediatetheinteractionbetweenribosomalproteinl30andtheseciselement
AT driscolldonnam identificationofnucleotidesandaminoacidsthatmediatetheinteractionbetweenribosomalproteinl30andtheseciselement