Cargando…
The Role of Balanced Training and Testing Data Sets for Binary Classifiers in Bioinformatics
Training and testing of conventional machine learning models on binary classification problems depend on the proportions of the two outcomes in the relevant data sets. This may be especially important in practical terms when real-world applications of the classifier are either highly imbalanced or o...
Autores principales: | Wei, Qiong, Dunbrack, Roland L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706434/ https://www.ncbi.nlm.nih.gov/pubmed/23874456 http://dx.doi.org/10.1371/journal.pone.0067863 |
Ejemplares similares
-
Fisher information metrics for binary classifier evaluation and training
por: Valassi, Andrea
Publicado: (2018) -
Multifaceted analysis of training and testing convolutional neural networks for protein secondary structure prediction
por: Shapovalov, Maxim, et al.
Publicado: (2020) -
PyIgClassify: a database of antibody CDR structural classifications
por: Adolf-Bryfogle, Jared, et al.
Publicado: (2014) -
Deconstructing Cross-Entropy for Probabilistic Binary Classifiers
por: Ramos, Daniel, et al.
Publicado: (2018) -
Synthetic data for design and evaluation of binary classifiers in the context of Bayesian transfer learning
por: Maddouri, Omar, et al.
Publicado: (2022)