Cargando…

Association of Mitochondrial Genetic Variation with Carotid Atherosclerosis

In human pathology, several diseases are associated with somatic mutations in the mitochondrial genome (mtDNA). Even though mitochondrial dysfunction leads to increased oxidative stress, the role of mitochondrial mutations in atherosclerosis has not received much attention so far. In this study we a...

Descripción completa

Detalles Bibliográficos
Autores principales: Sobenin, Igor A., Sazonova, Margarita A., Postnov, Anton Y., Salonen, Jukka T., Bobryshev, Yuri V., Orekhov, Alexander N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706616/
https://www.ncbi.nlm.nih.gov/pubmed/23874496
http://dx.doi.org/10.1371/journal.pone.0068070
Descripción
Sumario:In human pathology, several diseases are associated with somatic mutations in the mitochondrial genome (mtDNA). Even though mitochondrial dysfunction leads to increased oxidative stress, the role of mitochondrial mutations in atherosclerosis has not received much attention so far. In this study we analyzed the association of mitochondrial genetic variation with the severity of carotid atherosclerosis, as assessed by carotid intima-media thickness (cIMT) and the presence of coronary heart disease (CHD) in 190 subjects from Moscow, Russia, a population with high CHD occurrence. cIMT was measured by high-resolution B-mode ultrasonography and mtDNA heteroplasmies by a pyrosequencing-based method. We found that heteroplasmies for several mutations in the mtDNA in leukocytes, including C3256T, T3336C, G12315A, G13513A, G14459A, G14846A, and G15059A mutations, were significantly (p<0.001) associated with both the severity of carotid atherosclerosis and the presence of CHD. These findings indicate that somatic mitochondrial mutations have a role in the development of atherosclerosis.