Cargando…

Have we learnt all we need to know from genetic studies - is genetics over in Alzheimer's disease?

BACKGROUND: Alzheimer's disease (AD) pathophysiology is mostly (>95%) not inherited in a Mendelian fashion. Such sporadic AD (sAD) forms do not exhibit familial aggregation and are characterized by complex genetic inheritance. Growing evidence indicates that multiple genes contribute to sAD-...

Descripción completa

Detalles Bibliográficos
Autores principales: Hampel, Harald, Lista, Simone
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706946/
https://www.ncbi.nlm.nih.gov/pubmed/23510020
http://dx.doi.org/10.1186/alzrt165
_version_ 1782276439989551104
author Hampel, Harald
Lista, Simone
author_facet Hampel, Harald
Lista, Simone
author_sort Hampel, Harald
collection PubMed
description BACKGROUND: Alzheimer's disease (AD) pathophysiology is mostly (>95%) not inherited in a Mendelian fashion. Such sporadic AD (sAD) forms do not exhibit familial aggregation and are characterized by complex genetic inheritance. Growing evidence indicates that multiple genes contribute to sAD-characteristic endophenotypes, molecular mechanisms, signaling pathways and biomarker signatures either individually or through complex gene-gene interactions, lifestyle and the environment. DISCUSSION: Under the hypothesis that low-prevalence variants showing moderate-to-high effect size may be associated with risk for sAD, two independent research groups have demonstrated that a rare variant (rs75932628, encoding a substitution of arginine by histidine at residue 47 (R47H), in the TREM2 gene, which encodes the triggering receptor expressed on myeloid cells 2) is significantly associated with an increased susceptibility to sAD. Another study has provided intriguing evidence that a low-frequency variant (rs63750847) in the APP gene is associated with a reduced risk of developing AD and a lower likelihood of age-related cognitive decline in elderly subjects without AD. SUMMARY: Recent years have witnessed tremendous development in genetics technology that has allowed full individualized genome-wide or genomic screening embracing all of the risk and protective variants for sAD, both across populations and within individuals. Hopefully, the integration of neurogenetics with systems biology and high-throughput genotyping will further pave the way to decipher all of the related causes, mechanisms, and biomarkers across the spectrum of distinct AD forms. After an almost lost apprentice decade in AD therapy development, the epoch of individualized asymptomatic screening and progress in primary and secondary prevention of sAD is probably at its dawn. Even though we are more at the beginning than at the end of sAD genetics, there is some reason for optimism given the recent identification of novel risk or protective variants (such as rare TREM2 and APP mutations) showing strong statistical associations with sAD.
format Online
Article
Text
id pubmed-3706946
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-37069462013-07-15 Have we learnt all we need to know from genetic studies - is genetics over in Alzheimer's disease? Hampel, Harald Lista, Simone Alzheimers Res Ther Debate BACKGROUND: Alzheimer's disease (AD) pathophysiology is mostly (>95%) not inherited in a Mendelian fashion. Such sporadic AD (sAD) forms do not exhibit familial aggregation and are characterized by complex genetic inheritance. Growing evidence indicates that multiple genes contribute to sAD-characteristic endophenotypes, molecular mechanisms, signaling pathways and biomarker signatures either individually or through complex gene-gene interactions, lifestyle and the environment. DISCUSSION: Under the hypothesis that low-prevalence variants showing moderate-to-high effect size may be associated with risk for sAD, two independent research groups have demonstrated that a rare variant (rs75932628, encoding a substitution of arginine by histidine at residue 47 (R47H), in the TREM2 gene, which encodes the triggering receptor expressed on myeloid cells 2) is significantly associated with an increased susceptibility to sAD. Another study has provided intriguing evidence that a low-frequency variant (rs63750847) in the APP gene is associated with a reduced risk of developing AD and a lower likelihood of age-related cognitive decline in elderly subjects without AD. SUMMARY: Recent years have witnessed tremendous development in genetics technology that has allowed full individualized genome-wide or genomic screening embracing all of the risk and protective variants for sAD, both across populations and within individuals. Hopefully, the integration of neurogenetics with systems biology and high-throughput genotyping will further pave the way to decipher all of the related causes, mechanisms, and biomarkers across the spectrum of distinct AD forms. After an almost lost apprentice decade in AD therapy development, the epoch of individualized asymptomatic screening and progress in primary and secondary prevention of sAD is probably at its dawn. Even though we are more at the beginning than at the end of sAD genetics, there is some reason for optimism given the recent identification of novel risk or protective variants (such as rare TREM2 and APP mutations) showing strong statistical associations with sAD. BioMed Central 2013-03-18 /pmc/articles/PMC3706946/ /pubmed/23510020 http://dx.doi.org/10.1186/alzrt165 Text en Copyright © 2013 BioMed Central Ltd
spellingShingle Debate
Hampel, Harald
Lista, Simone
Have we learnt all we need to know from genetic studies - is genetics over in Alzheimer's disease?
title Have we learnt all we need to know from genetic studies - is genetics over in Alzheimer's disease?
title_full Have we learnt all we need to know from genetic studies - is genetics over in Alzheimer's disease?
title_fullStr Have we learnt all we need to know from genetic studies - is genetics over in Alzheimer's disease?
title_full_unstemmed Have we learnt all we need to know from genetic studies - is genetics over in Alzheimer's disease?
title_short Have we learnt all we need to know from genetic studies - is genetics over in Alzheimer's disease?
title_sort have we learnt all we need to know from genetic studies - is genetics over in alzheimer's disease?
topic Debate
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706946/
https://www.ncbi.nlm.nih.gov/pubmed/23510020
http://dx.doi.org/10.1186/alzrt165
work_keys_str_mv AT hampelharald havewelearntallweneedtoknowfromgeneticstudiesisgeneticsoverinalzheimersdisease
AT listasimone havewelearntallweneedtoknowfromgeneticstudiesisgeneticsoverinalzheimersdisease