Cargando…

Differential Expression and Function of Stamp Family Proteins in Adipocyte Differentiation

Six transmembrane protein of prostate (Stamp) proteins play an important role in prostate cancer cell growth. Recently, we found that Stamp2 has a critical role in the integration of inflammatory and metabolic signals in adipose tissue where it is highly expressed and regulated by nutritional and me...

Descripción completa

Detalles Bibliográficos
Autores principales: Sikkeland, Jørgen, Saatcioglu, Fahri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3707909/
https://www.ncbi.nlm.nih.gov/pubmed/23874564
http://dx.doi.org/10.1371/journal.pone.0068249
Descripción
Sumario:Six transmembrane protein of prostate (Stamp) proteins play an important role in prostate cancer cell growth. Recently, we found that Stamp2 has a critical role in the integration of inflammatory and metabolic signals in adipose tissue where it is highly expressed and regulated by nutritional and metabolic cues. In this study, we show that all Stamp family members are differentially regulated during adipogenesis: whereas Stamp1 expression is significantly decreased upon differentiation, Stamp2 expression is increased. In contrast, Stamp3 expression is modestly changed in adipocytes compared to preadipocytes, and has a biphasic expression pattern during the course of differentiation. Suppression of Stamp1 or Stamp2 expression both led to inhibition of 3T3-L1 differentiation in concert with diminished expression of the key regulators of adipogenesis - CCAAT/enhancer binding protein alpha (C/ebpα) and peroxisome proliferator-activated receptor gamma (Pparγ). Upon Stamp1 knockdown, mitotic clonal expansion was also inhibited. In contrast, Stamp2 knockdown did not affect mitotic clonal expansion, but resulted in a marked decrease in superoxide production that is known to affect adipogenesis. These results suggest that Stamp1 and Stamp2 play critical roles in adipogenesis, but through different mechanisms.