Cargando…
Application of Improved Three-Dimensional Kernel Approach to Prediction of Protein Structural Class
Kernel methods, such as kernel PCA, kernel PLS, and support vector machines, are widely known machine learning techniques in biology, medicine, chemistry, and material science. Based on nonlinear mapping and Coulomb function, two 3D kernel approaches were improved and applied to predictions of the f...
Autores principales: | Liu, Xu, Zhang, Yuchao, Yang, Hua, Wang, Lisheng, Liu, Shuaibing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708390/ https://www.ncbi.nlm.nih.gov/pubmed/23878814 http://dx.doi.org/10.1155/2013/625403 |
Ejemplares similares
-
Improving the prediction of disease-related variants using protein three-dimensional structure
por: Capriotti, Emidio, et al.
Publicado: (2011) -
A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure
por: Wheeler, Richard John
Publicado: (2021) -
Predicting Class II MHC-Peptide binding: a kernel based approach using similarity scores
por: Salomon, Jesper, et al.
Publicado: (2006) -
A novel protocol for three-dimensional structure prediction of RNA-protein complexes
por: Huang, Yangyu, et al.
Publicado: (2013) -
Improved functional prediction of proteins by learning kernel combinations in multilabel settings
por: Roth, Volker, et al.
Publicado: (2007)