Cargando…
A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda)
BACKGROUND: The infraorder Anomura has long captivated the attention of evolutionary biologists due to its impressive morphological diversity and ecological adaptations. To date, 2500 extant species have been described but phylogenetic relationships at high taxonomic levels remain unresolved. Here,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708748/ https://www.ncbi.nlm.nih.gov/pubmed/23786343 http://dx.doi.org/10.1186/1471-2148-13-128 |
_version_ | 1782276651196874752 |
---|---|
author | Bracken-Grissom, Heather D Cannon, Maren E Cabezas, Patricia Feldmann, Rodney M Schweitzer, Carrie E Ahyong, Shane T Felder, Darryl L Lemaitre, Rafael Crandall, Keith A |
author_facet | Bracken-Grissom, Heather D Cannon, Maren E Cabezas, Patricia Feldmann, Rodney M Schweitzer, Carrie E Ahyong, Shane T Felder, Darryl L Lemaitre, Rafael Crandall, Keith A |
author_sort | Bracken-Grissom, Heather D |
collection | PubMed |
description | BACKGROUND: The infraorder Anomura has long captivated the attention of evolutionary biologists due to its impressive morphological diversity and ecological adaptations. To date, 2500 extant species have been described but phylogenetic relationships at high taxonomic levels remain unresolved. Here, we reconstruct the evolutionary history—phylogeny, divergence times, character evolution and diversification—of this speciose clade. For this purpose, we sequenced two mitochondrial (16S and 12S) and three nuclear (H3, 18S and 28S) markers for 19 of the 20 extant families, using traditional Sanger and next-generation 454 sequencing methods. Molecular data were combined with 156 morphological characters in order to estimate the largest anomuran phylogeny to date. The anomuran fossil record allowed us to incorporate 31 fossils for divergence time analyses. RESULTS: Our best phylogenetic hypothesis (morphological + molecular data) supports most anomuran superfamilies and families as monophyletic. However, three families and eleven genera are recovered as para- and polyphyletic. Divergence time analysis dates the origin of Anomura to the Late Permian ~259 (224–296) MYA with many of the present day families radiating during the Jurassic and Early Cretaceous. Ancestral state reconstruction suggests that carcinization occurred independently 3 times within the group. The invasion of freshwater and terrestrial environments both occurred between the Late Cretaceous and Tertiary. Diversification analyses found the speciation rate to be low across Anomura, and we identify 2 major changes in the tempo of diversification; the most significant at the base of a clade that includes the squat-lobster family Chirostylidae. CONCLUSIONS: Our findings are compared against current classifications and previous hypotheses of anomuran relationships. Many families and genera appear to be poly- or paraphyletic suggesting a need for further taxonomic revisions at these levels. A divergence time analysis provides key insights into the origins of major lineages and events and the timing of morphological (body form) and ecological (habitat) transitions. Living anomuran biodiversity is the product of 2 major changes in the tempo of diversification; our initial insights suggest that the acquisition of a crab-like form did not act as a key innovation. |
format | Online Article Text |
id | pubmed-3708748 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-37087482013-07-12 A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda) Bracken-Grissom, Heather D Cannon, Maren E Cabezas, Patricia Feldmann, Rodney M Schweitzer, Carrie E Ahyong, Shane T Felder, Darryl L Lemaitre, Rafael Crandall, Keith A BMC Evol Biol Research Article BACKGROUND: The infraorder Anomura has long captivated the attention of evolutionary biologists due to its impressive morphological diversity and ecological adaptations. To date, 2500 extant species have been described but phylogenetic relationships at high taxonomic levels remain unresolved. Here, we reconstruct the evolutionary history—phylogeny, divergence times, character evolution and diversification—of this speciose clade. For this purpose, we sequenced two mitochondrial (16S and 12S) and three nuclear (H3, 18S and 28S) markers for 19 of the 20 extant families, using traditional Sanger and next-generation 454 sequencing methods. Molecular data were combined with 156 morphological characters in order to estimate the largest anomuran phylogeny to date. The anomuran fossil record allowed us to incorporate 31 fossils for divergence time analyses. RESULTS: Our best phylogenetic hypothesis (morphological + molecular data) supports most anomuran superfamilies and families as monophyletic. However, three families and eleven genera are recovered as para- and polyphyletic. Divergence time analysis dates the origin of Anomura to the Late Permian ~259 (224–296) MYA with many of the present day families radiating during the Jurassic and Early Cretaceous. Ancestral state reconstruction suggests that carcinization occurred independently 3 times within the group. The invasion of freshwater and terrestrial environments both occurred between the Late Cretaceous and Tertiary. Diversification analyses found the speciation rate to be low across Anomura, and we identify 2 major changes in the tempo of diversification; the most significant at the base of a clade that includes the squat-lobster family Chirostylidae. CONCLUSIONS: Our findings are compared against current classifications and previous hypotheses of anomuran relationships. Many families and genera appear to be poly- or paraphyletic suggesting a need for further taxonomic revisions at these levels. A divergence time analysis provides key insights into the origins of major lineages and events and the timing of morphological (body form) and ecological (habitat) transitions. Living anomuran biodiversity is the product of 2 major changes in the tempo of diversification; our initial insights suggest that the acquisition of a crab-like form did not act as a key innovation. BioMed Central 2013-06-20 /pmc/articles/PMC3708748/ /pubmed/23786343 http://dx.doi.org/10.1186/1471-2148-13-128 Text en Copyright © 2013 Bracken-Grissom et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Bracken-Grissom, Heather D Cannon, Maren E Cabezas, Patricia Feldmann, Rodney M Schweitzer, Carrie E Ahyong, Shane T Felder, Darryl L Lemaitre, Rafael Crandall, Keith A A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda) |
title | A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda) |
title_full | A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda) |
title_fullStr | A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda) |
title_full_unstemmed | A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda) |
title_short | A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda) |
title_sort | comprehensive and integrative reconstruction of evolutionary history for anomura (crustacea: decapoda) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708748/ https://www.ncbi.nlm.nih.gov/pubmed/23786343 http://dx.doi.org/10.1186/1471-2148-13-128 |
work_keys_str_mv | AT brackengrissomheatherd acomprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT cannonmarene acomprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT cabezaspatricia acomprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT feldmannrodneym acomprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT schweitzercarriee acomprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT ahyongshanet acomprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT felderdarryll acomprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT lemaitrerafael acomprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT crandallkeitha acomprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT brackengrissomheatherd comprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT cannonmarene comprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT cabezaspatricia comprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT feldmannrodneym comprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT schweitzercarriee comprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT ahyongshanet comprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT felderdarryll comprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT lemaitrerafael comprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda AT crandallkeitha comprehensiveandintegrativereconstructionofevolutionaryhistoryforanomuracrustaceadecapoda |