Cargando…

Rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex

We present a biologically-constrained neuromorphic spiking model of the insect antennal lobe macroglomerular complex that encodes concentration ratios of chemical components existing within a blend, implemented using a set of programmable logic neuronal modeling cores. Depending upon the level of in...

Descripción completa

Detalles Bibliográficos
Autores principales: Pearce, Timothy C., Karout, Salah, Rácz, Zoltán, Capurro, Alberto, Gardner, Julian W., Cole, Marina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709137/
https://www.ncbi.nlm.nih.gov/pubmed/23874265
http://dx.doi.org/10.3389/fnins.2013.00119
_version_ 1782276712841609216
author Pearce, Timothy C.
Karout, Salah
Rácz, Zoltán
Capurro, Alberto
Gardner, Julian W.
Cole, Marina
author_facet Pearce, Timothy C.
Karout, Salah
Rácz, Zoltán
Capurro, Alberto
Gardner, Julian W.
Cole, Marina
author_sort Pearce, Timothy C.
collection PubMed
description We present a biologically-constrained neuromorphic spiking model of the insect antennal lobe macroglomerular complex that encodes concentration ratios of chemical components existing within a blend, implemented using a set of programmable logic neuronal modeling cores. Depending upon the level of inhibition and symmetry in its inhibitory connections, the model exhibits two dynamical regimes: fixed point attractor (winner-takes-all type), and limit cycle attractor (winnerless competition type) dynamics. We show that, when driven by chemosensor input in real-time, the dynamical trajectories of the model's projection neuron population activity accurately encode the concentration ratios of binary odor mixtures in both dynamical regimes. By deploying spike timing-dependent plasticity in a subset of the synapses in the model, we demonstrate that a Hebbian-like associative learning rule is able to organize weights into a stable configuration after exposure to a randomized training set comprising a variety of input ratios. Examining the resulting local interneuron weights in the model shows that each inhibitory neuron competes to represent possible ratios across the population, forming a ratiometric representation via mutual inhibition. After training the resulting dynamical trajectories of the projection neuron population activity show amplification and better separation in their response to inputs of different ratios. Finally, we demonstrate that by using limit cycle attractor dynamics, it is possible to recover and classify blend ratio information from the early transient phases of chemosensor responses in real-time more rapidly and accurately compared to a nearest-neighbor classifier applied to the normalized chemosensor data. Our results demonstrate the potential of biologically-constrained neuromorphic spiking models in achieving rapid and efficient classification of early phase chemosensor array transients with execution times well beyond biological timescales.
format Online
Article
Text
id pubmed-3709137
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-37091372013-07-19 Rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex Pearce, Timothy C. Karout, Salah Rácz, Zoltán Capurro, Alberto Gardner, Julian W. Cole, Marina Front Neurosci Neuroscience We present a biologically-constrained neuromorphic spiking model of the insect antennal lobe macroglomerular complex that encodes concentration ratios of chemical components existing within a blend, implemented using a set of programmable logic neuronal modeling cores. Depending upon the level of inhibition and symmetry in its inhibitory connections, the model exhibits two dynamical regimes: fixed point attractor (winner-takes-all type), and limit cycle attractor (winnerless competition type) dynamics. We show that, when driven by chemosensor input in real-time, the dynamical trajectories of the model's projection neuron population activity accurately encode the concentration ratios of binary odor mixtures in both dynamical regimes. By deploying spike timing-dependent plasticity in a subset of the synapses in the model, we demonstrate that a Hebbian-like associative learning rule is able to organize weights into a stable configuration after exposure to a randomized training set comprising a variety of input ratios. Examining the resulting local interneuron weights in the model shows that each inhibitory neuron competes to represent possible ratios across the population, forming a ratiometric representation via mutual inhibition. After training the resulting dynamical trajectories of the projection neuron population activity show amplification and better separation in their response to inputs of different ratios. Finally, we demonstrate that by using limit cycle attractor dynamics, it is possible to recover and classify blend ratio information from the early transient phases of chemosensor responses in real-time more rapidly and accurately compared to a nearest-neighbor classifier applied to the normalized chemosensor data. Our results demonstrate the potential of biologically-constrained neuromorphic spiking models in achieving rapid and efficient classification of early phase chemosensor array transients with execution times well beyond biological timescales. Frontiers Media S.A. 2013-07-12 /pmc/articles/PMC3709137/ /pubmed/23874265 http://dx.doi.org/10.3389/fnins.2013.00119 Text en Copyright © 2013 Pearce, Karout, Rácz, Capurro, Gardner and Cole. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
spellingShingle Neuroscience
Pearce, Timothy C.
Karout, Salah
Rácz, Zoltán
Capurro, Alberto
Gardner, Julian W.
Cole, Marina
Rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex
title Rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex
title_full Rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex
title_fullStr Rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex
title_full_unstemmed Rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex
title_short Rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex
title_sort rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709137/
https://www.ncbi.nlm.nih.gov/pubmed/23874265
http://dx.doi.org/10.3389/fnins.2013.00119
work_keys_str_mv AT pearcetimothyc rapidprocessingofchemosensortransientsinaneuromorphicimplementationoftheinsectmacroglomerularcomplex
AT karoutsalah rapidprocessingofchemosensortransientsinaneuromorphicimplementationoftheinsectmacroglomerularcomplex
AT raczzoltan rapidprocessingofchemosensortransientsinaneuromorphicimplementationoftheinsectmacroglomerularcomplex
AT capurroalberto rapidprocessingofchemosensortransientsinaneuromorphicimplementationoftheinsectmacroglomerularcomplex
AT gardnerjulianw rapidprocessingofchemosensortransientsinaneuromorphicimplementationoftheinsectmacroglomerularcomplex
AT colemarina rapidprocessingofchemosensortransientsinaneuromorphicimplementationoftheinsectmacroglomerularcomplex