Cargando…

Classification of mitotic figures with convolutional neural networks and seeded blob features

BACKGROUND: The mitotic figure recognition contest at the 2012 International Conference on Pattern Recognition (ICPR) challenges a system to identify all mitotic figures in a region of interest of hematoxylin and eosin stained tissue, using each of three scanners (Aperio, Hamamatsu, and multispectra...

Descripción completa

Detalles Bibliográficos
Autores principales: Malon, Christopher D., Cosatto, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709419/
https://www.ncbi.nlm.nih.gov/pubmed/23858384
http://dx.doi.org/10.4103/2153-3539.112694
Descripción
Sumario:BACKGROUND: The mitotic figure recognition contest at the 2012 International Conference on Pattern Recognition (ICPR) challenges a system to identify all mitotic figures in a region of interest of hematoxylin and eosin stained tissue, using each of three scanners (Aperio, Hamamatsu, and multispectral). METHODS: Our approach combines manually designed nuclear features with the learned features extracted by convolutional neural networks (CNN). The nuclear features capture color, texture, and shape information of segmented regions around a nucleus. The use of a CNN handles the variety of appearances of mitotic figures and decreases sensitivity to the manually crafted features and thresholds. RESULTS: On the test set provided by the contest, the trained system achieves F1 scores up to 0.659 on color scanners and 0.589 on multispectral scanner. CONCLUSIONS: We demonstrate a powerful technique combining segmentation-based features with CNN, identifying the majority of mitotic figures with a fair precision. Further, we show that the approach accommodates information from the additional focal planes and spectral bands from a multi-spectral scanner without major redesign.