Cargando…

Preparation of Novel Poly(hydroxyethyl methacrylate-coglycidyl methacrylate)-Grafted Core-Shell Magnetic Chitosan Microspheres and Immobilization of Lactase

Poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted magnetic chitosan microspheres (HG-MCM) were prepared using reversed-phase suspension polymerization method. The HG-MCM presented a core-shell structure and regular spherical shape with poly(hydroxyethyl methacrylate-co-glycidyl methac...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Wei, Yang, Rui-Jin, Qian, Ting-Ting, Hua, Xiao, Zhang, Wen-Bin, Katiyo, Wendy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709774/
https://www.ncbi.nlm.nih.gov/pubmed/23743822
http://dx.doi.org/10.3390/ijms140612073
Descripción
Sumario:Poly(hydroxyethyl methacrylate-co-glycidyl methacrylate)-grafted magnetic chitosan microspheres (HG-MCM) were prepared using reversed-phase suspension polymerization method. The HG-MCM presented a core-shell structure and regular spherical shape with poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) grafted onto the chitosan layer coating the Fe(3)O(4) cores. The average diameter of the magnetic microspheres was 10.67 μm, within a narrow size distribution of 6.6–17.4 μm. The saturation magnetization and retentivity of the magnetic microspheres were 7.0033 emu/g and 0.6273 emu/g, respectively. The application of HG-MCM in immobilization of lactase showed that the immobilized enzyme presented higher storage, pH and thermal stability compared to the free enzyme. This indicates that HG-MCM have potential applications in bio-macromolecule immobilization.