Cargando…
Drosophila Adiponectin Receptor in Insulin Producing Cells Regulates Glucose and Lipid Metabolism by Controlling Insulin Secretion
Adipokines secreted from adipose tissue are key regulators of metabolism in animals. Adiponectin, one of the adipokines, modulates pancreatic beta cell function to maintain energy homeostasis. Recently, significant conservation between Drosophila melanogaster and mammalian metabolism has been discov...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709998/ https://www.ncbi.nlm.nih.gov/pubmed/23874700 http://dx.doi.org/10.1371/journal.pone.0068641 |
_version_ | 1782276824653365248 |
---|---|
author | Kwak, Su-Jin Hong, Seung-Hyun Bajracharya, Rijan Yang, Se-Yeol Lee, Kyu-Sun Yu, Kweon |
author_facet | Kwak, Su-Jin Hong, Seung-Hyun Bajracharya, Rijan Yang, Se-Yeol Lee, Kyu-Sun Yu, Kweon |
author_sort | Kwak, Su-Jin |
collection | PubMed |
description | Adipokines secreted from adipose tissue are key regulators of metabolism in animals. Adiponectin, one of the adipokines, modulates pancreatic beta cell function to maintain energy homeostasis. Recently, significant conservation between Drosophila melanogaster and mammalian metabolism has been discovered. Drosophila insulin like peptides (Dilps) regulate energy metabolism similarly to mammalian insulin. However, in Drosophila, the regulatory mechanism of insulin producing cells (IPCs) by adipokine signaling is largely unknown. Here, we describe the discovery of the Drosophila adiponectin receptor and its function in IPCs. Drosophila adiponectin receptor (dAdipoR) has high homology with the human adiponectin receptor 1. The dAdipoR antibody staining revealed that dAdipoR was expressed in IPCs of larval and adult brains. IPC- specific dAdipoR inhibition (Dilp2>dAdipoR-Ri) showed the increased sugar level in the hemolymph and the elevated triglyceride level in whole body. Dilps mRNA levels in the Dilp2>dAdipoR-Ri flies were similar with those of controls. However, in the Dilp2>dAdipoR-Ri flies, Dilp2 protein was accumulated in IPCs, the level of circulating Dilp2 was decreased, and insulin signaling was reduced in the fat body. In ex vivo fly brain culture with the human adiponectin, Dilp2 was secreted from IPCs. These results indicate that adiponectin receptor in insulin producing cells regulates insulin secretion and controls glucose and lipid metabolism in Drosophila melanogaster. This study demonstrates a new adipokine signaling in Drosophila and provides insights for the mammalian adiponectin receptor function in pancreatic beta cells, which could be useful for therapeutic application. |
format | Online Article Text |
id | pubmed-3709998 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37099982013-07-19 Drosophila Adiponectin Receptor in Insulin Producing Cells Regulates Glucose and Lipid Metabolism by Controlling Insulin Secretion Kwak, Su-Jin Hong, Seung-Hyun Bajracharya, Rijan Yang, Se-Yeol Lee, Kyu-Sun Yu, Kweon PLoS One Research Article Adipokines secreted from adipose tissue are key regulators of metabolism in animals. Adiponectin, one of the adipokines, modulates pancreatic beta cell function to maintain energy homeostasis. Recently, significant conservation between Drosophila melanogaster and mammalian metabolism has been discovered. Drosophila insulin like peptides (Dilps) regulate energy metabolism similarly to mammalian insulin. However, in Drosophila, the regulatory mechanism of insulin producing cells (IPCs) by adipokine signaling is largely unknown. Here, we describe the discovery of the Drosophila adiponectin receptor and its function in IPCs. Drosophila adiponectin receptor (dAdipoR) has high homology with the human adiponectin receptor 1. The dAdipoR antibody staining revealed that dAdipoR was expressed in IPCs of larval and adult brains. IPC- specific dAdipoR inhibition (Dilp2>dAdipoR-Ri) showed the increased sugar level in the hemolymph and the elevated triglyceride level in whole body. Dilps mRNA levels in the Dilp2>dAdipoR-Ri flies were similar with those of controls. However, in the Dilp2>dAdipoR-Ri flies, Dilp2 protein was accumulated in IPCs, the level of circulating Dilp2 was decreased, and insulin signaling was reduced in the fat body. In ex vivo fly brain culture with the human adiponectin, Dilp2 was secreted from IPCs. These results indicate that adiponectin receptor in insulin producing cells regulates insulin secretion and controls glucose and lipid metabolism in Drosophila melanogaster. This study demonstrates a new adipokine signaling in Drosophila and provides insights for the mammalian adiponectin receptor function in pancreatic beta cells, which could be useful for therapeutic application. Public Library of Science 2013-07-12 /pmc/articles/PMC3709998/ /pubmed/23874700 http://dx.doi.org/10.1371/journal.pone.0068641 Text en © 2013 Kwak et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kwak, Su-Jin Hong, Seung-Hyun Bajracharya, Rijan Yang, Se-Yeol Lee, Kyu-Sun Yu, Kweon Drosophila Adiponectin Receptor in Insulin Producing Cells Regulates Glucose and Lipid Metabolism by Controlling Insulin Secretion |
title |
Drosophila Adiponectin Receptor in Insulin Producing Cells Regulates Glucose and Lipid Metabolism by Controlling Insulin Secretion |
title_full |
Drosophila Adiponectin Receptor in Insulin Producing Cells Regulates Glucose and Lipid Metabolism by Controlling Insulin Secretion |
title_fullStr |
Drosophila Adiponectin Receptor in Insulin Producing Cells Regulates Glucose and Lipid Metabolism by Controlling Insulin Secretion |
title_full_unstemmed |
Drosophila Adiponectin Receptor in Insulin Producing Cells Regulates Glucose and Lipid Metabolism by Controlling Insulin Secretion |
title_short |
Drosophila Adiponectin Receptor in Insulin Producing Cells Regulates Glucose and Lipid Metabolism by Controlling Insulin Secretion |
title_sort | drosophila adiponectin receptor in insulin producing cells regulates glucose and lipid metabolism by controlling insulin secretion |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709998/ https://www.ncbi.nlm.nih.gov/pubmed/23874700 http://dx.doi.org/10.1371/journal.pone.0068641 |
work_keys_str_mv | AT kwaksujin drosophilaadiponectinreceptorininsulinproducingcellsregulatesglucoseandlipidmetabolismbycontrollinginsulinsecretion AT hongseunghyun drosophilaadiponectinreceptorininsulinproducingcellsregulatesglucoseandlipidmetabolismbycontrollinginsulinsecretion AT bajracharyarijan drosophilaadiponectinreceptorininsulinproducingcellsregulatesglucoseandlipidmetabolismbycontrollinginsulinsecretion AT yangseyeol drosophilaadiponectinreceptorininsulinproducingcellsregulatesglucoseandlipidmetabolismbycontrollinginsulinsecretion AT leekyusun drosophilaadiponectinreceptorininsulinproducingcellsregulatesglucoseandlipidmetabolismbycontrollinginsulinsecretion AT yukweon drosophilaadiponectinreceptorininsulinproducingcellsregulatesglucoseandlipidmetabolismbycontrollinginsulinsecretion |