Cargando…
Integrative relational machine-learning for understanding drug side-effect profiles
BACKGROUND: Drug side effects represent a common reason for stopping drug development during clinical trials. Improving our ability to understand drug side effects is necessary to reduce attrition rates during drug development as well as the risk of discovering novel side effects in available drugs....
Autores principales: | Bresso, Emmanuel, Grisoni, Renaud, Marchetti, Gino, Karaboga, Arnaud Sinan, Souchet, Devignes, Marie-Dominique, Smaïl-Tabbone, Malika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710241/ https://www.ncbi.nlm.nih.gov/pubmed/23802887 http://dx.doi.org/10.1186/1471-2105-14-207 |
Ejemplares similares
-
Discovering associations between adverse drug events using pattern structures and ontologies
por: Personeni, Gabin, et al.
Publicado: (2017) -
Low-Dose Alkylphenol Exposure Promotes Mammary Epithelium Alterations and Transgenerational Developmental Defects, But Does Not Enhance Tumorigenic Behavior of Breast Cancer Cells
por: Chamard-Jovenin, Clémence, et al.
Publicado: (2017) -
Ontology-guided data preparation for discovering genotype-phenotype relationships
por: Coulet, Adrien, et al.
Publicado: (2008) -
IntelliGO: a new vector-based semantic similarity measure including annotation origin
por: Benabderrahmane, Sidahmed, et al.
Publicado: (2010) -
KBDOCK 2013: a spatial classification of 3D protein domain family interactions
por: Ghoorah, Anisah W., et al.
Publicado: (2014)