Cargando…
Prediction of lung tumor types based on protein attributes by machine learning algorithms
Early diagnosis of lung cancers and distinction between the tumor types (Small Cell Lung Cancer (SCLC) and Non-Small Cell Lung Cancer (NSCLC) are very important to increase the survival rate of patients. Herein, we propose a diagnostic system based on sequence-derived structural and physicochemical...
Autores principales: | Hosseinzadeh, Faezeh, KayvanJoo, Amir Hossein, Ebrahimi, Mansuor, Goliaei, Bahram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710575/ https://www.ncbi.nlm.nih.gov/pubmed/23888262 http://dx.doi.org/10.1186/2193-1801-2-238 |
Ejemplares similares
-
Prediction of hepatitis C virus interferon/ribavirin therapy outcome based on viral nucleotide attributes using machine learning algorithms
por: KayvanJoo, Amir Hossein, et al.
Publicado: (2014) -
Classification of Lung Cancer Tumors Based on Structural and Physicochemical Properties of Proteins by Bioinformatics Models
por: Hosseinzadeh, Faezeh, et al.
Publicado: (2012) -
Correction: Classification of Lung Cancer Tumors Based on Structural and Physicochemical Properties of Proteins by Bioinformatics Models
por: Hosseinzadeh, Faezeh, et al.
Publicado: (2012) -
Machine Learning Based Classification of Microsatellite Variation: An Effective Approach for Phylogeographic Characterization of Olive Populations
por: Torkzaban, Bahareh, et al.
Publicado: (2015) -
Conifer: clonal tree inference for tumor heterogeneity with single-cell and bulk sequencing data
por: Baghaarabani, Leila, et al.
Publicado: (2021)