Cargando…
Improved network community structure improves function prediction
We are overwhelmed by experimental data, and need better ways to understand large interaction datasets. While clustering related nodes in such networks—known as community detection—appears a promising approach, detecting such communities is computationally difficult. Further, how to best use such co...
Autores principales: | Lee, Juyong, Gross, Steven P., Lee, Jooyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711050/ https://www.ncbi.nlm.nih.gov/pubmed/23852097 http://dx.doi.org/10.1038/srep02197 |
Ejemplares similares
-
Hidden Information Revealed by Optimal Community Structure from a Protein-Complex Bipartite Network Improves Protein Function Prediction
por: Lee, Juyong, et al.
Publicado: (2013) -
Community-Based Network Study of Protein-Carbohydrate Interactions in Plant Lectins Using Glycan Array Data
por: Malik, Adeel, et al.
Publicado: (2014) -
Random Forest-Based Protein Model Quality Assessment (RFMQA) Using Structural Features and Potential Energy Terms
por: Manavalan, Balachandran, et al.
Publicado: (2014) -
Inverse Resolution Limit of Partition Density and Detecting Overlapping Communities by Link-Surprise
por: Lee, Juyong, et al.
Publicado: (2017) -
CRFalign: A Sequence-Structure Alignment of Proteins Based on a Combination of HMM-HMM Comparison and Conditional Random Fields
por: Lee, Sung Jong, et al.
Publicado: (2022)