Cargando…

Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design

Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are findin...

Descripción completa

Detalles Bibliográficos
Autores principales: Drew, Kevin, Renfrew, P. Douglas, Craven, Timothy W., Butterfoss, Glenn L., Chou, Fang-Chieh, Lyskov, Sergey, Bullock, Brooke N., Watkins, Andrew, Labonte, Jason W., Pacella, Michael, Kilambi, Krishna Praneeth, Leaver-Fay, Andrew, Kuhlman, Brian, Gray, Jeffrey J., Bradley, Philip, Kirshenbaum, Kent, Arora, Paramjit S., Das, Rhiju, Bonneau, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712014/
https://www.ncbi.nlm.nih.gov/pubmed/23869206
http://dx.doi.org/10.1371/journal.pone.0067051
_version_ 1782277001429647360
author Drew, Kevin
Renfrew, P. Douglas
Craven, Timothy W.
Butterfoss, Glenn L.
Chou, Fang-Chieh
Lyskov, Sergey
Bullock, Brooke N.
Watkins, Andrew
Labonte, Jason W.
Pacella, Michael
Kilambi, Krishna Praneeth
Leaver-Fay, Andrew
Kuhlman, Brian
Gray, Jeffrey J.
Bradley, Philip
Kirshenbaum, Kent
Arora, Paramjit S.
Das, Rhiju
Bonneau, Richard
author_facet Drew, Kevin
Renfrew, P. Douglas
Craven, Timothy W.
Butterfoss, Glenn L.
Chou, Fang-Chieh
Lyskov, Sergey
Bullock, Brooke N.
Watkins, Andrew
Labonte, Jason W.
Pacella, Michael
Kilambi, Krishna Praneeth
Leaver-Fay, Andrew
Kuhlman, Brian
Gray, Jeffrey J.
Bradley, Philip
Kirshenbaum, Kent
Arora, Paramjit S.
Das, Rhiju
Bonneau, Richard
author_sort Drew, Kevin
collection PubMed
description Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are finding broad applications for molecular recognition and for inhibiting protein-protein interactions. One critical limitation is the limited set of design tools for identifying oligomer sequences that can adopt desired conformations. Here, we present expansions to the ROSETTA platform that enable structure prediction and design of five non-peptidic oligomer scaffolds (noncanonical backbones), oligooxopiperazines, oligo-peptoids, [Image: see text]-peptides, hydrogen bond surrogate helices and oligosaccharides. This work is complementary to prior additions to model noncanonical protein side chains in ROSETTA. The main purpose of our manuscript is to give a detailed description to current and future developers of how each of these noncanonical backbones was implemented. Furthermore, we provide a general outline for implementation of new backbone types not discussed here. To illustrate the utility of this approach, we describe the first tests of the ROSETTA molecular mechanics energy function in the context of oligooxopiperazines, using quantum mechanical calculations as comparison points, scanning through backbone and side chain torsion angles for a model peptidomimetic. Finally, as an example of a novel design application, we describe the automated design of an oligooxopiperazine that inhibits the p53-MDM2 protein-protein interaction. For the general biological and bioengineering community, several noncanonical backbones have been incorporated into web applications that allow users to freely and rapidly test the presented protocols (http://rosie.rosettacommons.org). This work helps address the peptidomimetic community's need for an automated and expandable modeling tool for noncanonical backbones.
format Online
Article
Text
id pubmed-3712014
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-37120142013-07-18 Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design Drew, Kevin Renfrew, P. Douglas Craven, Timothy W. Butterfoss, Glenn L. Chou, Fang-Chieh Lyskov, Sergey Bullock, Brooke N. Watkins, Andrew Labonte, Jason W. Pacella, Michael Kilambi, Krishna Praneeth Leaver-Fay, Andrew Kuhlman, Brian Gray, Jeffrey J. Bradley, Philip Kirshenbaum, Kent Arora, Paramjit S. Das, Rhiju Bonneau, Richard PLoS One Research Article Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are finding broad applications for molecular recognition and for inhibiting protein-protein interactions. One critical limitation is the limited set of design tools for identifying oligomer sequences that can adopt desired conformations. Here, we present expansions to the ROSETTA platform that enable structure prediction and design of five non-peptidic oligomer scaffolds (noncanonical backbones), oligooxopiperazines, oligo-peptoids, [Image: see text]-peptides, hydrogen bond surrogate helices and oligosaccharides. This work is complementary to prior additions to model noncanonical protein side chains in ROSETTA. The main purpose of our manuscript is to give a detailed description to current and future developers of how each of these noncanonical backbones was implemented. Furthermore, we provide a general outline for implementation of new backbone types not discussed here. To illustrate the utility of this approach, we describe the first tests of the ROSETTA molecular mechanics energy function in the context of oligooxopiperazines, using quantum mechanical calculations as comparison points, scanning through backbone and side chain torsion angles for a model peptidomimetic. Finally, as an example of a novel design application, we describe the automated design of an oligooxopiperazine that inhibits the p53-MDM2 protein-protein interaction. For the general biological and bioengineering community, several noncanonical backbones have been incorporated into web applications that allow users to freely and rapidly test the presented protocols (http://rosie.rosettacommons.org). This work helps address the peptidomimetic community's need for an automated and expandable modeling tool for noncanonical backbones. Public Library of Science 2013-07-15 /pmc/articles/PMC3712014/ /pubmed/23869206 http://dx.doi.org/10.1371/journal.pone.0067051 Text en © 2013 Drew et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Drew, Kevin
Renfrew, P. Douglas
Craven, Timothy W.
Butterfoss, Glenn L.
Chou, Fang-Chieh
Lyskov, Sergey
Bullock, Brooke N.
Watkins, Andrew
Labonte, Jason W.
Pacella, Michael
Kilambi, Krishna Praneeth
Leaver-Fay, Andrew
Kuhlman, Brian
Gray, Jeffrey J.
Bradley, Philip
Kirshenbaum, Kent
Arora, Paramjit S.
Das, Rhiju
Bonneau, Richard
Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design
title Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design
title_full Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design
title_fullStr Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design
title_full_unstemmed Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design
title_short Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design
title_sort adding diverse noncanonical backbones to rosetta: enabling peptidomimetic design
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712014/
https://www.ncbi.nlm.nih.gov/pubmed/23869206
http://dx.doi.org/10.1371/journal.pone.0067051
work_keys_str_mv AT drewkevin addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT renfrewpdouglas addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT craventimothyw addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT butterfossglennl addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT choufangchieh addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT lyskovsergey addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT bullockbrooken addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT watkinsandrew addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT labontejasonw addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT pacellamichael addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT kilambikrishnapraneeth addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT leaverfayandrew addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT kuhlmanbrian addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT grayjeffreyj addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT bradleyphilip addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT kirshenbaumkent addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT aroraparamjits addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT dasrhiju addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign
AT bonneaurichard addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign