Cargando…
Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design
Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are findin...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712014/ https://www.ncbi.nlm.nih.gov/pubmed/23869206 http://dx.doi.org/10.1371/journal.pone.0067051 |
_version_ | 1782277001429647360 |
---|---|
author | Drew, Kevin Renfrew, P. Douglas Craven, Timothy W. Butterfoss, Glenn L. Chou, Fang-Chieh Lyskov, Sergey Bullock, Brooke N. Watkins, Andrew Labonte, Jason W. Pacella, Michael Kilambi, Krishna Praneeth Leaver-Fay, Andrew Kuhlman, Brian Gray, Jeffrey J. Bradley, Philip Kirshenbaum, Kent Arora, Paramjit S. Das, Rhiju Bonneau, Richard |
author_facet | Drew, Kevin Renfrew, P. Douglas Craven, Timothy W. Butterfoss, Glenn L. Chou, Fang-Chieh Lyskov, Sergey Bullock, Brooke N. Watkins, Andrew Labonte, Jason W. Pacella, Michael Kilambi, Krishna Praneeth Leaver-Fay, Andrew Kuhlman, Brian Gray, Jeffrey J. Bradley, Philip Kirshenbaum, Kent Arora, Paramjit S. Das, Rhiju Bonneau, Richard |
author_sort | Drew, Kevin |
collection | PubMed |
description | Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are finding broad applications for molecular recognition and for inhibiting protein-protein interactions. One critical limitation is the limited set of design tools for identifying oligomer sequences that can adopt desired conformations. Here, we present expansions to the ROSETTA platform that enable structure prediction and design of five non-peptidic oligomer scaffolds (noncanonical backbones), oligooxopiperazines, oligo-peptoids, [Image: see text]-peptides, hydrogen bond surrogate helices and oligosaccharides. This work is complementary to prior additions to model noncanonical protein side chains in ROSETTA. The main purpose of our manuscript is to give a detailed description to current and future developers of how each of these noncanonical backbones was implemented. Furthermore, we provide a general outline for implementation of new backbone types not discussed here. To illustrate the utility of this approach, we describe the first tests of the ROSETTA molecular mechanics energy function in the context of oligooxopiperazines, using quantum mechanical calculations as comparison points, scanning through backbone and side chain torsion angles for a model peptidomimetic. Finally, as an example of a novel design application, we describe the automated design of an oligooxopiperazine that inhibits the p53-MDM2 protein-protein interaction. For the general biological and bioengineering community, several noncanonical backbones have been incorporated into web applications that allow users to freely and rapidly test the presented protocols (http://rosie.rosettacommons.org). This work helps address the peptidomimetic community's need for an automated and expandable modeling tool for noncanonical backbones. |
format | Online Article Text |
id | pubmed-3712014 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-37120142013-07-18 Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design Drew, Kevin Renfrew, P. Douglas Craven, Timothy W. Butterfoss, Glenn L. Chou, Fang-Chieh Lyskov, Sergey Bullock, Brooke N. Watkins, Andrew Labonte, Jason W. Pacella, Michael Kilambi, Krishna Praneeth Leaver-Fay, Andrew Kuhlman, Brian Gray, Jeffrey J. Bradley, Philip Kirshenbaum, Kent Arora, Paramjit S. Das, Rhiju Bonneau, Richard PLoS One Research Article Peptidomimetics are classes of molecules that mimic structural and functional attributes of polypeptides. Peptidomimetic oligomers can frequently be synthesized using efficient solid phase synthesis procedures similar to peptide synthesis. Conformationally ordered peptidomimetic oligomers are finding broad applications for molecular recognition and for inhibiting protein-protein interactions. One critical limitation is the limited set of design tools for identifying oligomer sequences that can adopt desired conformations. Here, we present expansions to the ROSETTA platform that enable structure prediction and design of five non-peptidic oligomer scaffolds (noncanonical backbones), oligooxopiperazines, oligo-peptoids, [Image: see text]-peptides, hydrogen bond surrogate helices and oligosaccharides. This work is complementary to prior additions to model noncanonical protein side chains in ROSETTA. The main purpose of our manuscript is to give a detailed description to current and future developers of how each of these noncanonical backbones was implemented. Furthermore, we provide a general outline for implementation of new backbone types not discussed here. To illustrate the utility of this approach, we describe the first tests of the ROSETTA molecular mechanics energy function in the context of oligooxopiperazines, using quantum mechanical calculations as comparison points, scanning through backbone and side chain torsion angles for a model peptidomimetic. Finally, as an example of a novel design application, we describe the automated design of an oligooxopiperazine that inhibits the p53-MDM2 protein-protein interaction. For the general biological and bioengineering community, several noncanonical backbones have been incorporated into web applications that allow users to freely and rapidly test the presented protocols (http://rosie.rosettacommons.org). This work helps address the peptidomimetic community's need for an automated and expandable modeling tool for noncanonical backbones. Public Library of Science 2013-07-15 /pmc/articles/PMC3712014/ /pubmed/23869206 http://dx.doi.org/10.1371/journal.pone.0067051 Text en © 2013 Drew et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Drew, Kevin Renfrew, P. Douglas Craven, Timothy W. Butterfoss, Glenn L. Chou, Fang-Chieh Lyskov, Sergey Bullock, Brooke N. Watkins, Andrew Labonte, Jason W. Pacella, Michael Kilambi, Krishna Praneeth Leaver-Fay, Andrew Kuhlman, Brian Gray, Jeffrey J. Bradley, Philip Kirshenbaum, Kent Arora, Paramjit S. Das, Rhiju Bonneau, Richard Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design |
title | Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design |
title_full | Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design |
title_fullStr | Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design |
title_full_unstemmed | Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design |
title_short | Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design |
title_sort | adding diverse noncanonical backbones to rosetta: enabling peptidomimetic design |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712014/ https://www.ncbi.nlm.nih.gov/pubmed/23869206 http://dx.doi.org/10.1371/journal.pone.0067051 |
work_keys_str_mv | AT drewkevin addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT renfrewpdouglas addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT craventimothyw addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT butterfossglennl addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT choufangchieh addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT lyskovsergey addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT bullockbrooken addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT watkinsandrew addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT labontejasonw addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT pacellamichael addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT kilambikrishnapraneeth addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT leaverfayandrew addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT kuhlmanbrian addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT grayjeffreyj addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT bradleyphilip addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT kirshenbaumkent addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT aroraparamjits addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT dasrhiju addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign AT bonneaurichard addingdiversenoncanonicalbackbonestorosettaenablingpeptidomimeticdesign |