Cargando…
X-Box Binding Protein 1 Is Essential for Insulin Regulation of Pancreatic α-Cell Function
Patients with type 2 diabetes (T2D) often exhibit hyperglucagonemia despite hyperglycemia, implicating defective α-cell function. Although endoplasmic reticulum (ER) stress has been suggested to underlie β-cell dysfunction in T2D, its role in α-cell biology remains unclear. X-box binding protein 1 (...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712068/ https://www.ncbi.nlm.nih.gov/pubmed/23493568 http://dx.doi.org/10.2337/db12-1747 |
_version_ | 1782277013970616320 |
---|---|
author | Akiyama, Masaru Liew, Chong Wee Lu, Shusheng Hu, Jiang Martinez, Rachael Hambro, Ben Kennedy, Robert T. Kulkarni, Rohit N. |
author_facet | Akiyama, Masaru Liew, Chong Wee Lu, Shusheng Hu, Jiang Martinez, Rachael Hambro, Ben Kennedy, Robert T. Kulkarni, Rohit N. |
author_sort | Akiyama, Masaru |
collection | PubMed |
description | Patients with type 2 diabetes (T2D) often exhibit hyperglucagonemia despite hyperglycemia, implicating defective α-cell function. Although endoplasmic reticulum (ER) stress has been suggested to underlie β-cell dysfunction in T2D, its role in α-cell biology remains unclear. X-box binding protein 1 (XBP1) is a transcription factor that plays a crucial role in the unfolded protein response (UPR), and its deficiency in β-cells has been reported to impair insulin secretion, leading to glucose intolerance. To evaluate the role of XBP1 in α-cells, we created complementary in vivo (α-cell–specific XBP1 knockout [αXBPKO] mice) and in vitro (stable XBP1 knockdown α-cell line [αXBPKD]) models. The αXBPKO mice exhibited glucose intolerance, mild insulin resistance, and an inability to suppress glucagon secretion after glucose stimulation. αXBPKD cells exhibited activation of inositol-requiring enzyme 1, an upstream activator of XBP1, leading to phosphorylation of Jun NH(2)-terminal kinase. Interestingly, insulin treatment of αXBPKD cells reduced tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) (pY(896)) and phosphorylation of Akt while enhancing serine phosphorylation (pS(307)) of IRS1. Consequently, the αXBPKD cells exhibited blunted suppression of glucagon secretion after insulin treatment in the presence of high glucose. Together, these data indicate that XBP1 deficiency in pancreatic α-cells induces altered insulin signaling and dysfunctional glucagon secretion. |
format | Online Article Text |
id | pubmed-3712068 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-37120682014-07-01 X-Box Binding Protein 1 Is Essential for Insulin Regulation of Pancreatic α-Cell Function Akiyama, Masaru Liew, Chong Wee Lu, Shusheng Hu, Jiang Martinez, Rachael Hambro, Ben Kennedy, Robert T. Kulkarni, Rohit N. Diabetes Original Research Patients with type 2 diabetes (T2D) often exhibit hyperglucagonemia despite hyperglycemia, implicating defective α-cell function. Although endoplasmic reticulum (ER) stress has been suggested to underlie β-cell dysfunction in T2D, its role in α-cell biology remains unclear. X-box binding protein 1 (XBP1) is a transcription factor that plays a crucial role in the unfolded protein response (UPR), and its deficiency in β-cells has been reported to impair insulin secretion, leading to glucose intolerance. To evaluate the role of XBP1 in α-cells, we created complementary in vivo (α-cell–specific XBP1 knockout [αXBPKO] mice) and in vitro (stable XBP1 knockdown α-cell line [αXBPKD]) models. The αXBPKO mice exhibited glucose intolerance, mild insulin resistance, and an inability to suppress glucagon secretion after glucose stimulation. αXBPKD cells exhibited activation of inositol-requiring enzyme 1, an upstream activator of XBP1, leading to phosphorylation of Jun NH(2)-terminal kinase. Interestingly, insulin treatment of αXBPKD cells reduced tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) (pY(896)) and phosphorylation of Akt while enhancing serine phosphorylation (pS(307)) of IRS1. Consequently, the αXBPKD cells exhibited blunted suppression of glucagon secretion after insulin treatment in the presence of high glucose. Together, these data indicate that XBP1 deficiency in pancreatic α-cells induces altered insulin signaling and dysfunctional glucagon secretion. American Diabetes Association 2013-07 2013-06-14 /pmc/articles/PMC3712068/ /pubmed/23493568 http://dx.doi.org/10.2337/db12-1747 Text en © 2013 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
spellingShingle | Original Research Akiyama, Masaru Liew, Chong Wee Lu, Shusheng Hu, Jiang Martinez, Rachael Hambro, Ben Kennedy, Robert T. Kulkarni, Rohit N. X-Box Binding Protein 1 Is Essential for Insulin Regulation of Pancreatic α-Cell Function |
title | X-Box Binding Protein 1 Is Essential for Insulin Regulation of Pancreatic α-Cell Function |
title_full | X-Box Binding Protein 1 Is Essential for Insulin Regulation of Pancreatic α-Cell Function |
title_fullStr | X-Box Binding Protein 1 Is Essential for Insulin Regulation of Pancreatic α-Cell Function |
title_full_unstemmed | X-Box Binding Protein 1 Is Essential for Insulin Regulation of Pancreatic α-Cell Function |
title_short | X-Box Binding Protein 1 Is Essential for Insulin Regulation of Pancreatic α-Cell Function |
title_sort | x-box binding protein 1 is essential for insulin regulation of pancreatic α-cell function |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712068/ https://www.ncbi.nlm.nih.gov/pubmed/23493568 http://dx.doi.org/10.2337/db12-1747 |
work_keys_str_mv | AT akiyamamasaru xboxbindingprotein1isessentialforinsulinregulationofpancreaticacellfunction AT liewchongwee xboxbindingprotein1isessentialforinsulinregulationofpancreaticacellfunction AT lushusheng xboxbindingprotein1isessentialforinsulinregulationofpancreaticacellfunction AT hujiang xboxbindingprotein1isessentialforinsulinregulationofpancreaticacellfunction AT martinezrachael xboxbindingprotein1isessentialforinsulinregulationofpancreaticacellfunction AT hambroben xboxbindingprotein1isessentialforinsulinregulationofpancreaticacellfunction AT kennedyrobertt xboxbindingprotein1isessentialforinsulinregulationofpancreaticacellfunction AT kulkarnirohitn xboxbindingprotein1isessentialforinsulinregulationofpancreaticacellfunction |