Cargando…

Syndecan and integrin interactomes: large complexes in small spaces

The syndecan family of transmembrane proteoglycans cooperate with integrins to regulate both early and late events in adhesion formation. The heparan sulphate chains substituted on to the syndecan ectodomains are capable of engaging ligands over great distance, while the protein core spans the plasm...

Descripción completa

Detalles Bibliográficos
Autores principales: Roper, James A, Williamson, Rosalind C, Bass, Mark D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712168/
https://www.ncbi.nlm.nih.gov/pubmed/22841476
http://dx.doi.org/10.1016/j.sbi.2012.07.003
Descripción
Sumario:The syndecan family of transmembrane proteoglycans cooperate with integrins to regulate both early and late events in adhesion formation. The heparan sulphate chains substituted on to the syndecan ectodomains are capable of engaging ligands over great distance, while the protein core spans the plasma membrane and initiates cytoplasmic signals through a short cytoplasmic tail. These properties create a spatial paradox. The volume of the heparan sulphate chains greatly exceeds that of the integrins with which it cooperates, while the short cytodomain must bind to multiple cytoplasmic factors, despite being long enough to bind only one or two. In this review we consider the structural rearrangements that a cell undertakes to overcome spatial restrictions and compare the interactomes of syndecans and integrins to gain insight into the composition of adhesions and how they are regulated over time.