Cargando…
Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans
The increasingly recognized role of gastrointestinal signals in the regulation of food intake, insulin production and peripheral nutrient storage has prompted a surge of interest in studying how the gastrointestinal tract senses and responds to nutritional information. Identification of metabolicall...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712190/ https://www.ncbi.nlm.nih.gov/pubmed/22248674 http://dx.doi.org/10.1016/j.semcdb.2012.01.002 |
_version_ | 1782277037107445760 |
---|---|
author | Miguel-Aliaga, Irene |
author_facet | Miguel-Aliaga, Irene |
author_sort | Miguel-Aliaga, Irene |
collection | PubMed |
description | The increasingly recognized role of gastrointestinal signals in the regulation of food intake, insulin production and peripheral nutrient storage has prompted a surge of interest in studying how the gastrointestinal tract senses and responds to nutritional information. Identification of metabolically important intestinal nutrient sensors could provide potential new drug targets for the treatment of diabetes, obesity and gastrointestinal disorders. From a more fundamental perspective, the study of intestinal chemosensation is revealing novel, non-neuronal modes of communication involving differentiated epithelial cells. It is also identifying signalling mechanisms downstream of not only canonical receptors but also nutrient transporters, thereby supporting a chemosensory role for “transceptors” in the intestine. This review describes known and proposed mechanisms of intestinal carbohydrate, protein and lipid sensing, best characterized in mammalian systems. It also highlights the potential of invertebrate model systems such as C. elegans and Drosophila melanogaster by summarizing known examples of molecular evolutionary conservation. Recently developed genetic tools in Drosophila, an emerging model system for the study of physiology and metabolism, allow the temporal, spatial and high-throughput manipulation of putative intestinal sensors. Hence, fruit flies may prove particularly suited to the study of the link between intestinal nutrient sensing and metabolic homeostasis. |
format | Online Article Text |
id | pubmed-3712190 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Academic Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-37121902013-07-17 Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans Miguel-Aliaga, Irene Semin Cell Dev Biol Review The increasingly recognized role of gastrointestinal signals in the regulation of food intake, insulin production and peripheral nutrient storage has prompted a surge of interest in studying how the gastrointestinal tract senses and responds to nutritional information. Identification of metabolically important intestinal nutrient sensors could provide potential new drug targets for the treatment of diabetes, obesity and gastrointestinal disorders. From a more fundamental perspective, the study of intestinal chemosensation is revealing novel, non-neuronal modes of communication involving differentiated epithelial cells. It is also identifying signalling mechanisms downstream of not only canonical receptors but also nutrient transporters, thereby supporting a chemosensory role for “transceptors” in the intestine. This review describes known and proposed mechanisms of intestinal carbohydrate, protein and lipid sensing, best characterized in mammalian systems. It also highlights the potential of invertebrate model systems such as C. elegans and Drosophila melanogaster by summarizing known examples of molecular evolutionary conservation. Recently developed genetic tools in Drosophila, an emerging model system for the study of physiology and metabolism, allow the temporal, spatial and high-throughput manipulation of putative intestinal sensors. Hence, fruit flies may prove particularly suited to the study of the link between intestinal nutrient sensing and metabolic homeostasis. Academic Press 2012-08 /pmc/articles/PMC3712190/ /pubmed/22248674 http://dx.doi.org/10.1016/j.semcdb.2012.01.002 Text en © 2012 Elsevier Ltd. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Review Miguel-Aliaga, Irene Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans |
title | Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans |
title_full | Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans |
title_fullStr | Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans |
title_full_unstemmed | Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans |
title_short | Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans |
title_sort | nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712190/ https://www.ncbi.nlm.nih.gov/pubmed/22248674 http://dx.doi.org/10.1016/j.semcdb.2012.01.002 |
work_keys_str_mv | AT miguelaliagairene nervelessandgutsyintestinalnutrientsensingfrominvertebratestohumans |