Cargando…

Ontogenesis of Gonadotropin-Releasing Hormone Neurons: A Model for Hypothalamic Neuroendocrine Cell Development

The vertebrate hypothalamo–pituitary–gonadal axis is the anatomical framework responsible for reproductive competence and species propagation. Essential to the coordinated actions of this three-tiered biological system is the fact that the regulatory inputs ultimately converge on the gonadotropin-re...

Descripción completa

Detalles Bibliográficos
Autores principales: Stevenson, Erica L., Corella, Kristina M., Chung, Wilson C. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712253/
https://www.ncbi.nlm.nih.gov/pubmed/23882261
http://dx.doi.org/10.3389/fendo.2013.00089
Descripción
Sumario:The vertebrate hypothalamo–pituitary–gonadal axis is the anatomical framework responsible for reproductive competence and species propagation. Essential to the coordinated actions of this three-tiered biological system is the fact that the regulatory inputs ultimately converge on the gonadotropin-releasing hormone (GnRH) neuronal system, which in rodents primarily resides in the preoptic/hypothalamic region. In this short review we will focus on: (1) the general embryonic temporal and spatial development of the rodent GnRH neuronal system, (2) the origin(s) of GnRH neurons, and (3) which transcription – and growth factors have been found to be critical for GnRH neuronal ontogenesis and cellular fate-specification. Moreover, we ask the question whether the molecular and cellular mechanisms involved in GnRH neuronal development may also play a role in the development of other hypophyseal secreting neuroendocrine cells in the hypothalamus.