Cargando…

Glucagon-like peptide-1 analogues: An overview

Abnormalities of the incretin axis have been implicated in the pathogenesis of type 2 diabetes mellitus. Glucagon-like peptide-1 (GLP-1) and gastroinhibitory intestinal peptide constitutes >90% of all the incretin function. Augmentation of GLP-1 results in improvement of beta cell health in a glu...

Descripción completa

Detalles Bibliográficos
Autor principal: Gupta, Vishal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712370/
https://www.ncbi.nlm.nih.gov/pubmed/23869296
http://dx.doi.org/10.4103/2230-8210.111625
Descripción
Sumario:Abnormalities of the incretin axis have been implicated in the pathogenesis of type 2 diabetes mellitus. Glucagon-like peptide-1 (GLP-1) and gastroinhibitory intestinal peptide constitutes >90% of all the incretin function. Augmentation of GLP-1 results in improvement of beta cell health in a glucose-dependant manner (post-prandial hyperglycemia) and suppression of glucagon (fasting hyperglycemia), amongst other beneficial pleiotropic effects. Native GLP-1 has a very short plasma half-life and novel methods have been developed to augment its half life, such that its anti-hyperglycemic effects can be exploited. They can be broadly classified as exendin-based therapies (exenatide, exenatide once weekly), DPP-4-resistant analogues (lixisenatide, albiglutide), and analogues of human GLP-1 (liraglutide, taspoglutide). Currently, commercially available analogues are exenatide, exenatide once weekly, and liraglutide. This review aims to provide an overview of most GLP-1 analogues.