Cargando…

Molecular dissection of TatC defines critical regions essential for protein transport and a TatB–TatC contact site

The twin arginine transport (Tat) system transports folded proteins across the prokaryotic cytoplasmic membrane and the plant thylakoid membrane. TatC is the largest and most conserved component of the Tat machinery. It forms a multisubunit complex with TatB and binds the signal peptides of Tat subs...

Descripción completa

Detalles Bibliográficos
Autores principales: Kneuper, Holger, Maldonado, Barbara, Jäger, Franziska, Krehenbrink, Martin, Buchanan, Grant, Keller, Rebecca, Müller, Matthias, Berks, Ben C, Palmer, Tracy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712464/
https://www.ncbi.nlm.nih.gov/pubmed/22742417
http://dx.doi.org/10.1111/j.1365-2958.2012.08151.x
_version_ 1782277073026416640
author Kneuper, Holger
Maldonado, Barbara
Jäger, Franziska
Krehenbrink, Martin
Buchanan, Grant
Keller, Rebecca
Müller, Matthias
Berks, Ben C
Palmer, Tracy
author_facet Kneuper, Holger
Maldonado, Barbara
Jäger, Franziska
Krehenbrink, Martin
Buchanan, Grant
Keller, Rebecca
Müller, Matthias
Berks, Ben C
Palmer, Tracy
author_sort Kneuper, Holger
collection PubMed
description The twin arginine transport (Tat) system transports folded proteins across the prokaryotic cytoplasmic membrane and the plant thylakoid membrane. TatC is the largest and most conserved component of the Tat machinery. It forms a multisubunit complex with TatB and binds the signal peptides of Tat substrates. Here we have taken a random mutagenesis approach to identify substitutions in Escherichia coli TatC that inactivate protein transport. We identify 32 individual amino acid substitutions that abolish or severely compromise TatC activity. The majority of the inactivating substitutions fall within the first two periplasmic loops of TatC. These regions are predicted to have conserved secondary structure and results of extensive amino acid insertion and deletion mutagenesis are consistent with these conserved elements being essential for TatC function. Three inactivating substitutions were identified in the fifth transmembrane helix of TatC. The inactive M205R variant could be suppressed by mutations affecting amino acids in the transmembrane helix of TatB. A physical interaction between TatC helix 5 and the TatB transmembrane helix was confirmed by the formation of a site-specific disulphide bond between TatC M205C and TatB L9C variants. This is the first molecular contact site mapped to single amino acid level between these two proteins.
format Online
Article
Text
id pubmed-3712464
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-37124642013-07-25 Molecular dissection of TatC defines critical regions essential for protein transport and a TatB–TatC contact site Kneuper, Holger Maldonado, Barbara Jäger, Franziska Krehenbrink, Martin Buchanan, Grant Keller, Rebecca Müller, Matthias Berks, Ben C Palmer, Tracy Mol Microbiol Original Articles The twin arginine transport (Tat) system transports folded proteins across the prokaryotic cytoplasmic membrane and the plant thylakoid membrane. TatC is the largest and most conserved component of the Tat machinery. It forms a multisubunit complex with TatB and binds the signal peptides of Tat substrates. Here we have taken a random mutagenesis approach to identify substitutions in Escherichia coli TatC that inactivate protein transport. We identify 32 individual amino acid substitutions that abolish or severely compromise TatC activity. The majority of the inactivating substitutions fall within the first two periplasmic loops of TatC. These regions are predicted to have conserved secondary structure and results of extensive amino acid insertion and deletion mutagenesis are consistent with these conserved elements being essential for TatC function. Three inactivating substitutions were identified in the fifth transmembrane helix of TatC. The inactive M205R variant could be suppressed by mutations affecting amino acids in the transmembrane helix of TatB. A physical interaction between TatC helix 5 and the TatB transmembrane helix was confirmed by the formation of a site-specific disulphide bond between TatC M205C and TatB L9C variants. This is the first molecular contact site mapped to single amino acid level between these two proteins. Blackwell Publishing Ltd 2012-09 2012-07-13 /pmc/articles/PMC3712464/ /pubmed/22742417 http://dx.doi.org/10.1111/j.1365-2958.2012.08151.x Text en © 2012 Blackwell Publishing Ltd http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
spellingShingle Original Articles
Kneuper, Holger
Maldonado, Barbara
Jäger, Franziska
Krehenbrink, Martin
Buchanan, Grant
Keller, Rebecca
Müller, Matthias
Berks, Ben C
Palmer, Tracy
Molecular dissection of TatC defines critical regions essential for protein transport and a TatB–TatC contact site
title Molecular dissection of TatC defines critical regions essential for protein transport and a TatB–TatC contact site
title_full Molecular dissection of TatC defines critical regions essential for protein transport and a TatB–TatC contact site
title_fullStr Molecular dissection of TatC defines critical regions essential for protein transport and a TatB–TatC contact site
title_full_unstemmed Molecular dissection of TatC defines critical regions essential for protein transport and a TatB–TatC contact site
title_short Molecular dissection of TatC defines critical regions essential for protein transport and a TatB–TatC contact site
title_sort molecular dissection of tatc defines critical regions essential for protein transport and a tatb–tatc contact site
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712464/
https://www.ncbi.nlm.nih.gov/pubmed/22742417
http://dx.doi.org/10.1111/j.1365-2958.2012.08151.x
work_keys_str_mv AT kneuperholger moleculardissectionoftatcdefinescriticalregionsessentialforproteintransportandatatbtatccontactsite
AT maldonadobarbara moleculardissectionoftatcdefinescriticalregionsessentialforproteintransportandatatbtatccontactsite
AT jagerfranziska moleculardissectionoftatcdefinescriticalregionsessentialforproteintransportandatatbtatccontactsite
AT krehenbrinkmartin moleculardissectionoftatcdefinescriticalregionsessentialforproteintransportandatatbtatccontactsite
AT buchanangrant moleculardissectionoftatcdefinescriticalregionsessentialforproteintransportandatatbtatccontactsite
AT kellerrebecca moleculardissectionoftatcdefinescriticalregionsessentialforproteintransportandatatbtatccontactsite
AT mullermatthias moleculardissectionoftatcdefinescriticalregionsessentialforproteintransportandatatbtatccontactsite
AT berksbenc moleculardissectionoftatcdefinescriticalregionsessentialforproteintransportandatatbtatccontactsite
AT palmertracy moleculardissectionoftatcdefinescriticalregionsessentialforproteintransportandatatbtatccontactsite