Cargando…

N-Terminal Truncated Intracellular Matrix Metalloproteinase-2 Induces Cardiomyocyte Hypertrophy, Inflammation and Systolic Heart Failure

Matrix metalloproteinase-2 (MMP-2) is increasingly recognized as a major contributor to progressive cardiac injury within the setting of ischemia-reperfusion injury and ischemic ventricular remodeling. A common feature of these conditions is an increase in oxidative stress, a process that engages mu...

Descripción completa

Detalles Bibliográficos
Autores principales: Lovett, David H., Mahimkar, Rajeev, Raffai, Robert L., Cape, Leslie, Zhu, Bo-Qing, Jin, Zhu-Qiu, Baker, Anthony J., Karliner, Joel S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712965/
https://www.ncbi.nlm.nih.gov/pubmed/23874529
http://dx.doi.org/10.1371/journal.pone.0068154
Descripción
Sumario:Matrix metalloproteinase-2 (MMP-2) is increasingly recognized as a major contributor to progressive cardiac injury within the setting of ischemia-reperfusion injury and ischemic ventricular remodeling. A common feature of these conditions is an increase in oxidative stress, a process that engages multiple pro-inflammatory and innate immunity cascades. We recently reported on the identification and characterization of an intracellular isoform of MMP-2 generated by oxidative stress-mediated activation of an alternative promoter located within the first intron of the MMP-2 gene. Transcription from this site generates an N-terminal truncated 65 kDa isoform of MMP-2 (NTT-MMP-2) that lacks the secretory sequence and the inhibitory prodomain region. The NTT-MMP-2 isoform is intracellular, enzymatically active and localizes in part to mitochondria. Expression of the NTT-MMP-2 isoform triggers Nuclear Factor of Activated T-cell (NFAT) and NF-κB signaling with the expression of a highly defined innate immunity transcriptome, including Interleukin-6, MCP-1, IRF-7 and pro-apoptotic transcripts. To determine the functional significance of the NTT-MMP-2 isoform in vivo we generated cardiac-specific NTT-MMP-2 transgenic mice. These mice developed progressive cardiomyocyte and ventricular hypertrophy associated with systolic heart failure. Further, there was evidence for cardiomyocyte apoptosis and myocardial infiltration with mononuclear cells. The NTT-MMP-2 transgenic hearts also demonstrated more severe injury following ex vivo ischemia-reperfusion injury. We conclude that a novel intracellular MMP-2 isoform induced by oxidant stress directly contributes, in the absence of superimposed injury, to cardiomyocyte hypertrophy. inflammation, systolic heart failure and enhanced susceptibility to ischemia-reperfusion injury.